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Introduction

Statistics is the science of data.

Data are the numerical values containing some information.

Statistical tools can be used on a data set to draw statistical inferences. These statistical inferences are
in turn used for various purposes. For example, government uses such data for policy formulation for
the welfare of the people, marketing companies use the data from consumer surveys to improve the
company and to provide better services to the customer, etc. Such data is obtained through sample
surveys. Sample surveys are conducted throughout the world by governmental as well as non-
governmental agencies. For example, ‘“National Sample Survey Organization (NSSO)” conducts
surveys in India, ‘“Statistics Canada” conducts surveys in Canada, agencies of United Nations like
“World Health Organization (WHO), “Food and Agricultural Organization (FAO)” etc. conduct

surveys in different countries.

Sampling theory provides the tools and techniques for data collection keeping in mind the objectives to

be fulfilled and nature of population.

There are two ways of obtaining the information
1. Sample surveys

2. Complete enumeration or census

Sample surveys collect information on a fraction of total population whereas census collect information
on whole population. Some surveys e.g., economic surveys, agricultural surveys etc. are conducted
regularly. Some surveys are need based and are conducted when some need arises, e.g., consumer
satisfaction surveys at a newly opened shopping mall to see the satisfaction level with the amenities

provided in the mall .
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Sampling unit:
An element or a group of elements on which the observations can be taken is called a sampling unit.

The objective of the survey helps in determining the definition of sampling unit.

For example, if the objective is to determine the total income of all the persons in the household, then
the sampling unit is household. If the objective is to determine the income of any particular person in
the household, then the sampling unit is the income of the particular person in the household. So the
definition of sampling unit depends and varies as per the objective of the survey. Similarly, in another
example, if the objective is to study the blood sugar level, then the sampling unit is the value of blood
sugar level of a person. On the other hand, if the objective is to study the health conditions, then the
sampling unit is the person on whom the readings on the blood sugar level, blood pressure and other

factors will be obtained. These values will together classify the person as healthy or unhealthy.

Population:

Collection of all the sampling units in a given region at a particular point of time or a particular period
is called the population. For example, if the medical facilities in a hospital are to be surveyed through
the patients, then the total number of patients registered in the hospital during the time period of survey
will the population. Similarly, if the production of wheat in a district is to be studied, then all the fields
cultivating wheat in that district will be constitute the population. The total number of sampling units in
the population is the population size, denoted generally by N. The population size can be finite or

infinite (N is large).

Census:
The complete count of population is called census. The observations on all the sampling units in the
population are collected in the census. For example, in India, the census is conducted at every tenth

year in which observations on all the persons staying in India is collected.

Sample:
One or more sampling units are selected from the population according to some specified procedure.
A sample consists only of a portion of the population units. Such a collection of units is called the

sample.
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In the context of sample surveys, a collection of units like households, people, cities, countries etc. is
called a finite population.

A census is a 100% sample and it is a complete count of the population.

Representative sample:
When all the salient features of the population are present in the sample, then it is called a
representative sample,

It goes without saying that every sample is considered as a representative sample.

For example, if a population has 30% males and 70% females, then we also expect the sample to have

nearly 30% males and 70% females.

In another example, if we take out a handful of wheat from a 100 Kg. bag of wheat, we expect the
same quality of wheat in hand as inside the bag. Similarly, it is expected that a drop of blood will give

the same information as all the blood in the body.

Sampling frame:

The list of all the units of the population to be surveyed constitutes the sampling frame. All the
sampling units in the sampling frame have identification particulars. For example, all the students in a
particular university listed along with their roll numbers constitute the sampling frame. Similarly, the
list of households with the name of head of family or house address constitutes the sampling frame. In
another example, the residents of a city area may be listed in more than one frame - as per automobile

registration as well as the listing in the telephone directory.

Ways to ensure representativeness:

There are two possible ways to ensure that the selected sample is representative.
1. Random sample or probability sample:

The selection of units in the sample from a population is governed by the laws of chance or probability.

The probability of selection of a unit can be equal as well as unequal.
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2. Non-random sample or purposive sample:

The selection of units in the sample from population is not governed by the probability laws.

For example, the units are selected on the basis of personal judgment of the surveyor. The persons

volunteering to take some medical test or to drink a new type of coffee also constitute the sample on

non-random laws.

Another type of sampling is Quota Sampling. The survey in this case is continued until a

predetermined number of units with the characteristic under study are picked up.

For example, in order to conduct an experiment for rare type of disease, the survey is continued till

the required number of patients with the disease are collected.

Advantages of sampling over complete enumeration:

1.

Reduced cost and enlarged scope.

Sampling involves the collection of data on smaller number of units in comparison to the
complete enumeration, so the cost involved in the collection of information is reduced. Further,
additional information can be obtained at little cost in comparison to conducting another
separate survey. For example, when an interviewer is collecting information on health
conditions, then he/she can also ask some questions on health practices. This will provide
additional information on health practices and the cost involved will be much less than

conducting an entirely new survey on health practices.

Organizaton of work:

It is easier to manage the organization of collection of smaller number of units than all the units
in a census. For example, in order to draw a representative sample from a state, it is easier to
manage to draw small samples from every city than drawing the sample from the whole state at
a time. This ultimately results in more accuracy in the statistical inferences because better

organization provides better data and in turn, improved statistical inferences are obtained.
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3. Greater accuracy:
The persons involved in the collection of data are trained personals. They can collect the data

more accurately if they have to collect smaller number of units than large number of units.

4. Urgent information required:
The data from a sample can be quickly summarized.
For example, the forecasting of the crop production can be done quickly on the basis of a

sample of data than collecting first all the observation.

5. Feasibility:
Conducting the experiment on smaller number of units, particularly when the units are
destroyed, is more feasible. For example, in determining the life of bulbs, it is more feasible to
fuse minimum number of bulbs. Similarly, in any medical experiment, it is more feasible to use

less number of animals.

Type of surveys:

There are various types of surveys which are conducted on the basis of the objectives to be fulfilled.

1. Demographic surveys:
These surveys are conducted to collect the demographic data, e.g., household surveys, family size,
number of males in families, etc. Such surveys are useful in the policy formulation for any city, state or

country for the welfare of the people.

2. Educational surveys:

These surveys are conducted to collect the educational data, e.g., how many children go to school, how
many persons are graduate, etc. Such surveys are conducted to examine the educational programs in
schools and colleges. Generally, schools are selected first and then the students from each school

constitue the sample.
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3. Economic surveys:

These surveys are conducted to collect the economic data, e.g., data related to export and import of
goods, industrial production, consumer expenditure etc. Such data is helpful in constructing the indices
indicating the growth in a particular sector of economy or even the overall economic growth of the

country.

4. Employment surveys:
These surveys are conducted to collect the employment related data, e.g., employment rate, labour
conditions, wages, etc. in a city, state or country. Such data helps in constructing various indices to

know the employment conditions among the people.

5. Health and nutrition surveys:
These surveys are conducted to collect the data related to health and nutrition issues, e.g., number of
visits to doctors, food given to children, nutritional value etc. Such surveys are conducted in cities,

states as well as countries by the national and international organizations like UNICEF, WHO etc.

6. Agricultural surveys:
These surveys are conducted to collect the agriculture related data to estimate, e.g., the acreage and
production of crops, livestock numbers, use of fertilizers, use of pesticides and other related topics. The

government bases its planning related to the food issues for the people based on such surveys.

7. Marketing surveys:

These surveys are conducted to collect the data related to marketing. They are conducted by major
companies, manufacturers or those who provide services to consumer etc. Such data is used for
knowing the satisfaction and opinion of consumers as well as in developing the sales, purchase and

promotional activities etc.

8. Election surveys:
These surveys are conducted to study the outcome of an election or a poll. For example, such polls are
conducted in democratic countries to have the opinions of people about any candidate who is contesting

the election.
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9. Public polls and surveys:
These surveys are conducted to collect the public opinion on any particular issue. Such surveys are
generally conducted by the news media and the agencies which conduct polls and surveys on the

current topics of interest to public.

10. Campus surveys:
These surveys are conducted on the students of any educational institution to study about the

educational programs, living facilities, dining facilities, sports activities, etc.

Principal steps in a sample survey:

The broad steps to conduct any sample surveys are as follows:

1. Objective of the survey:

The objective of the survey has to be clearly defined and well understood by the person planning to
conduct it. It is expected from the statistician to be well versed with the issues to be addressed in
consultation with the person who wants to get the survey conducted. In complex surveys, sometimes the

objective is forgotten and data is collected on those issues which are far away from the objectives.

2. Population to be sampled:
Based on the objectives of the survey, decide the population from which the information can be
obtained. For example, population of farmers is to be sampled for an agricultural survey whereas the

population of patients has to be sampled for determining the medical facilities in a hospital.

3. Data to be collected:

It is important to decide that which data is relevant for fulfilling the objectives of the survey and to
note that no essential data is omitted. Sometimes, too many questions are asked and some of their
outcomes are never utilized. This lowers the quality of the responses and in turn results in lower

efficiency in the statistical inferences.
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4. Degree of precision required:

The results of any sample survey are always subjected to some uncertainty. Such uncertainty can be
reduced by taking larger samples or using superior instruments. This involves more cost and more time.
So it is very important to decide about the required degree of precision in the data. This needs to be

conveyed to the surveyor also.

5. Method of measurement:

The choice of measuring instrument and the method to measure the data from the population needs to
be specified clearly. For example, the data has to be collected through interview, questionnaire,
personal visit, combination of any of these approaches, etc. The forms in which the data is to be
recorded so that the data can be transferred to mechanical equipment for easily creating the data

summary etc. is also needed to be prepared accordingly.

6. The frame:

The sampling frame has to be clearly specified. The population is divided into sampling units such that
the units cover the whole population and every sampling unit is tagged with identification. The list of
all sampling units is called the frame. The frame must cover the whole population and the units must
not overlap each other in the sense that every element in the population must belong to one and only
one unit. For example, the sampling unit can be an individual member in the family or the whole

family.

7. Selection of sample:
The size of the sample needs to be specified for the given sampling plan. This helps in determining and
comparing the relative cost and time of different sampling plans. The method and plan adopted for

drawing a representative sample should also be detailed.
8. The Pre-test:

It is advised to try the questionnaire and field methods on a small scale. This may reveal some troubles

and problems beforehand which the surveyor may face in the field in large scale surveys.
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9. Organization of the field work:

How to conduct the survey, how to handle business administrative issues, providing proper training to
surveyors, procedures, plans for handling the non-response and missing observations etc. are some of
the issues which need to be addressed for organizing the survey work in the fields. The procedure for
early checking of the quality of return should be prescribed. It should be clarified how to handle the

situation when the respondent is not available.

10. Summary and analysis of data:

It is to be noted that based on the objectives of the data, the suitable statistical tool is decided which
can answer the relevant questions. In order to use the statistical tool, a valid data set is required and this
dictates the choice of responses to be obtained for the questions in the questionnaire, e.g., the data has
to be qualitative, quantitative, nominal, ordinal etc. After getting the completed questionnaire back, it
needs to be edited to amend the recording errors and delete the erroneous data. The tabulating
procedures, methods of estimation and tolerable amount of error in the estimation needs to be decided
before the start of survey. Different methods of estimation may be available to get the answer of the
same query from the same data set. So the data needs to be collected which is compatible with the

chosen estimation procedure.

11. Information gained for future surveys:

The completed surveys work as guide for improved sample surveys in future. Beside this they also
supply various types of prior information required to use various statistical tools, e.g., mean, variance,
nature of variability, cost involved etc. Any completed sample survey acts as a potential guide for the
surveys to be conducted in the future. It is generally seen that the things always do not go in the same
way in any complex survey as planned earlier. Such precautions and alerts help in avoiding the

mistakes in the execution of future surveys.
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Variability control in sample surveys:

The variability control is an important issue in any statistical analysis. A general objective is to draw
statistical inferences with minimum variability. There are various types of sampling schemes which are
adopted in different conditions. These schemes help in controlling the variability at different stages.

Such sampling schemes can be classified in the following way.

1. Before selection of sampling units
* Stratified sampling
*  Cluster sampling
* Two stage sampling

* Double sampling etc.

2. At the time of selection of sampling units
* Systematic sampling

* Varying probability sampling

3. After the selection of sampling units
* Ratio method of estimation
* Regression method of estimation
Note that the ratio and regtresion methods are the methods of estimation and not the methods of

drawing samples.

Methods of data collection

There are various way of data collection. Some of them are as follows:

1. Physical observations and measurements:

The surveyor contacts the respondent personally through the meeting. He observes the sampling unit
and records the data. The surveyor can always use his prior experience to collect the data in a better
way. For example, a young man telling his age as 60 years can easily be observed and corrected by the

surveyor.

10
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2. Personal interview:
The surveyor is supplied with a well prepared questionnaire. The surveyor goes to the respondents and
asks the same questions mentioned in the questionnaire. The data in the questionnaire is then filled up

accordingly based on the responses from the respondents.

3. Mail enquiry:

The well prepared questionnaire is sent to the respondents through postal mail, e-mail, etc. The
respondents are requested to fill up the questionnaires and send it back. In case of postal mail, many
times the questionnaires are accompanied by a self addressed envelope with postage stamps to avoid

any non-response due to the cost of postage.

4. Web based enquiry:

The survey is conducted online through internet based web pages. There are various websites which
provide such facility. The questionnaires are to be in their formats and the link is sent to the
respondents through email. By clicking on the link, the respondent is brought to the concerned website
and the answers are to be given online. These answers are recorded and responses as well as their
statistics is sent to the surveyor. The respondents should have internet connection to support the data

collection with this procedure.

5. Registration:
The respondent is required to register the data at some designated place. For example, the number of
births and deaths along with the details provided by the family members are recorded at city municipal

office which are provided by the family members.

6. Transcription from records:
The sample of data is collected from the already recorded information. For example, the details of the
number of persons in different families or number of births/deaths in a city can be obtained from the

city municipal office directly.

The methods in (1) to (5) provide primary data which means collecting the data directly from the
source. The method in (6) provides the secondary data which means getting the data from the primary

sources.

11
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Cluster Sampling

It is one of the basic assumptions in any sampling procedure that the population can be divided into a finite
number of distinct and identifiable units, called sampling units. The smallest units into which the
population can be divided are called elements of the population. The groups of such elements are called

clusters.

In many practical situations and many types of populations, a list of elements is not available and so the
use of an element as a sampling unit is not feasible. The method of cluster sampling or area sampling can

be used in such situations.

In cluster sampling
- divide the whole population into clusters according to some well defined rule.
- Treat the clusters as sampling units.
- Choose a sample of clusters according to some procedure.
- Carry out a complete enumeration of the selected clusters, i.e., collect information on all the

sampling units available in selected clusters.

Area sampling
In case, the entire area containing the populations is subdivided into smaller area segments and each
element in the population is associated with one and only one such area segment, the procedure is called as

area sampling.

Examples:

e In a city, the list of all the individual persons staying in the houses may be difficult to obtain or even
may be not available but a list of all the houses in the city may be available. So every individual
person will be treated as sampling unit and every house will be a cluster.

e The list of all the agricultural farms in a village or a district may not be easily available but the list
of village or districts are generally available. In this case, every farm in sampling unit and every

village or district is the cluster.
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Moreover, it is easier, faster, cheaper and convenient to collect information on clusters rather than on

sampling units.

In both the examples, draw a sample of clusters from houses/villages and then collect the observations on

all the sampling units available in the selected clusters.

Conditions under which the cluster sampling is used:
Cluster sampling is preferred when
(1) No reliable listing of elements is available and it is expensive to prepare it.
(i1) Even if the list of elements is available, the location or identification of the units may be
difficult.
(i11)) A necessary condition for the validity of this procedure is that every unit of the population
under study must correspond to one and only one unit of the cluster so that the total number of
sampling units in the frame may cover all the units of the population under study without any

omission or duplication. When this condition is not satisfied, bias is introduced.

Open segment and closed segment:

It is not necessary that all the elements associated with an area segment need be located physically within
its boundaries. For example, in the study of farms, the different fields of the same farm need not lie within

the same area segment. Such a segment is called an open segment.

In a closed segment, the sum of the characteristic under study, i.e., area, livestock etc. for all the elements

associated with the segment will account for all the area, livestock etc. within the segment.

Construction of clusters:

The clusters are constructed such that the sampling units are heterogeneous within the clusters and
homogeneous among the clusters. The reason for this will become clear later. This is opposite to the

construction of the strata in the stratified sampling.

There are two options to construct the clusters — equal size and unequal size. We discuss the estimation of

population means and its variance in both the cases.

Page 14 of 101



Case of equal clusters

Suppose the population is divided into N clusters and each cluster is of size n.

Select a sample of #n clusters from N clusters by the method of SRS, generally WOR.
So

total population size = NM
total sample size = nM .
Let

y; : Value of the characteristic under study for the value of j" element (j=1,2,..,M) in the i" cluster

(i=1,2,..,N).

_ 1
y, = MZ y,;, mean per element of i" cluster .
J=1
Population (VM units)
A
......... Population
N clusters
N Clusters

A
......... Sample
n clusters

n Clusters
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Estimation of population mean:
First select n clusters from N clusters by SRSWOR.
Based on n clusters, find the mean of each cluster separately based on all the units in every cluster. So we

have the cluster means as y,,7,,...,»,. Consider the mean of all such cluster means as an estimator of

population mean as
S
Va = ;yi :
Bias:
_ I G,
E(;vc,)=;ZE(yl-)
i=1

:%anf (since SRS is used)
i=1
=Y.
Thus ¥, is an unbiased estimator of Y.
Variance:
The variance of y, can be derived on the same lines as deriving the variance of sample mean in
SRSWOR. The only difference is that in SRSWOR, the sampling units are y,,,,...,», Whereas in case

of y,, the sampling units are ¥,,,,...,7,.

{Note that is case of SRSWOR, Var(7) = %52 and Var(y) = NN_ s } ,
n n

Var(y,)=E(y,-Y)
Nn

1 &S = Co .
where S :—Z(yl.—Y ) which is the mean sum of square between the cluster means in the

-1 i=1
population.
Estimate of variance:

Using again the philosophy of estimate of variance in case of SRSWOR, we can find

— N-n
ar(r) ="

1 & - - . :
where s; = —lz (7, —¥,)’ is the mean sum of squares between cluster means in the sample .
—Lig

Page 16 of 101



Comparison with SRS :
If an equivalent sample of nM units were to be selected from the population of NM units by SRSWOR,

the variance of the mean per element would be

NM —nM  §?
NM  nM
2

Var(y,,)=

S5
n M
n 1 YU
and S* = ZZ(yU Y).

Consider
N
(NM -D)S* =3 3

1

IME

(yg,' _?)2

2

[y -3+ -1)]

Ms

=2

i=1

XSS W WEo)

i=l j=1 i=1 j=I

1

.
Il

=NWM -S> +M(N-1)S;

where

1 : o . :
S2= WZ S? is the mean sum of squares within clusters in the population

S?=——>"(y,~7)" is the mean sum of squares for the i" cluster.

The efficiency of cluster sampling over SRSWOR is

:Var(.)_}nM)
Var(y,,)
S2
MS;
_ 1L |NM-DS;
T(NM-)| M S?

+(N—1)}.
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Thus the relative efficiency increases when S? is large and S} is small. So cluster sampling will be

efficient if clusters are so formed that the variation the between cluster means is as small as possible while

variation within the clusters is as large as possible.

Efficiency in terms of intra class correlation
The intra class correlation between the elements within a cluster is given by

_EG-N0s-Y) 1
E(y,-Y) = M-l

1 N M M
o . .
_MNM-1)5 zlk (; 1(yu YV —Y)

<p<l

S|~
M=
S
é

=l j=l k()=

_ i=l j=1 k(=j)=1

B [MN 1) R
MN

>Y > 0, -N-1)

(MN —-1)(M -1)S?

Consider

Z<y, 7y —Z{ : Zm—?)}

i=1

2
M M

S0P S 3 00D

i=1 )=l

=Y Y 4D -D =Y E TP =Y D0, -F

i=1 j=1k(#j)=1 i=1 i=1 j=1

or
P(MN -1)(M -1)S* = M*(N -1)S; —(NM -1)S?
»_ (MN-1) 2
or b:m[l'i'p(M—l)S ]
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The variance of y, now becomes

_ N-n
Var(ycl): Slf
N-nMN-18°
= 1+(M-1)p].
Nn N-1 Mz[ ( ]

For large N,MN_I:I, N-n =1 and so
MN N

2

Var(7,) =~ {1+ (M ~Dp].

The variance of sample mean under SRSWOR for large N is

SZ
Var(y , )=——.
(ynM) nM

The relative efficiency for large N is now given by
E — Var(.)_}_nM)
Var(y,)
S2
nM
S2
I+ (M -1
L@ =Dp]
1 1
- . 1<ps<- :
1+(M -1)p (M —1)

e If M=1then E=1, i.e, SRS and cluster sampling are equally efficient. Each cluster will consist
of one unit, i.e., SRS.
e If M >1, then cluster sampling is more efficient when
E>1
or (M -1)p<0
or p<0.
e If p=0,then E =1, i.e., there is no error which means that the units in each cluster are arranged
randomly. So sample is heterogeneous.
e Inpractice, p isusually positive and p decreases as M increases but the rate of decrease in p
is much lower in comparison to the rate of increase in M. The situation that >0 is possible
when the nearby units are grouped together to form cluster and which are completely enumerated.

e There are situations when p<0.
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Estimation of relative efficiency:
The relative efficiency of cluster sampling relative to an equivalent SRSWOR is obtained as

S2
MS;

An estimator of E can be obtained by substituting the estimates of S* and S.

. _ IE_ . _ . _ . .
Since Yy, :—Z ¥, 1s the mean of » means y, from a population of N means y,i=12,..,N which

i=l1

are drawn by SRSWOR, so from the theory of SRSWOR,
&,
B =13 557 |
i=1
1 & =
=— > (p.-Y)
T ;(y, )
e
Thus s, is an unbiased estimator of S, .

) 1 ) )
Since s> =—) S? is the mean of #n mean sum of squares S’ drawn from the population of N mean
w i q ; pop
i=1

sums of squares Sf, i=1,2,...,N, so it follows from the theory of SRSWOR that
2 1 - 2
E(s2)= E[—ZSI. }
n—13

=— ) S
S
=5?
Thus 5 is an unbiased estimator of S?.

Consider

1
MN —14

§? =

Z(yg/ _Y)Z

=1

M=

Il
—_
~

or (MN-1S*=3"3[(,-F)+GF~-1) ]

i=l j=1

=ﬁf[(y,,—z)2+(ﬁ—?f]

=1 j=

N
=> (M-S’ +M(N-1)S;
i=1

=NM -S> +M(N-1S;.
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An unbiased estimator of S can be obtained as

S? = M; 1[N(M -5 + M (N -Ds; |.

So

@(.)_/cl) = NNnn S[f

N—ng
Nn M

Var(y,,, )=

1 n
where s, =m2()_’,~ —Va)
i=1

2

An estimate of efficiency E = = is
MS,

N(M =15 +M (N -1)s;

E= d
M(NM —1)s

If N islarge sothat M (N —1)=MN and MN —1= MN, then

1 (M-1) S
E=—+|——
M \ M )MS;

and its estimate is

—2
EA':L_F M—l SW2 .
M M )Ms

Estimation of a proportion in case of equal cluster
Now, we consider the problem of estimation of the proportion of units in the population having a specified

attribute on the basis of a sample of clusters. Let this proportion be P.

th

Suppose that a sample of 7 clusters is drawn from N clusters by SRSWOR. Defining y, =1 if the ;
unit in the i cluster belongs to the specified category (i.e. possessing the given attribute) and y; =0

otherwise, we find that
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_ 1 N
Y—W;R—P,
» _ MFQ,
-1’
N

MY PO,
2 i=1
"NWM-1)°
,  NMPQ

CNM -1’
Szz;i( > _ )2
bON-15 ’

th

where P is the proportion of elements in the i® cluster, belonging to the specified category and

0 =1-P,i=12,.,N and Q=1-P. Then, using the result that ¥, is an unbiased estimator of Y, we

find that

ﬁcz: B,

S |-

i=l1

1s an unbiased estimator of P and

i {NPQ - ﬁP,»QI]
Var(ﬁcz) = (NNnn) (N _i:i)

This variance of P, can be expressed as

N-n PO
N-1nM

Var(P,) = [1+(M ~1)p],

where the value of p can be obtained from where

_M(N-1)S; - NS;
(MN —1)

by substituting S;,S’ and S* in p, we obtain
10
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Mz

M 2 FO,
(M - l)N PO

p=1-

The variance of I3C, can be estimated unbiasedly by

@(f’d)= N

N (n 1)2(

N-n p
Nn(n 1){ o= ZPQ}

where ch =/- IA’;]. The efficiency of cluster sampling relative to SRSWOR is given by
_M(N-1) 1
(MN -1) [1+(M -1)p]
_(N-D) NPQ

NM‘l(NPQ—ﬁEQ,-)

If N islarge, then E=—

An estimator of the total number of elements belonging to a specified category is obtained by multiplying

13L, , by NM , i.e. by NM]%, .- The expressions of variance and its estimator are obtained by multiplying the

corresponding expressions for P, by N2M>,

Case of unequal clusters:

In practice, the equal size of clusters are available only when planned. For example, in a screw
manufacturing company, the packets of screws can be prepared such that every packet contains same
number of screws. In real applications, it is hard to get clusters of equal size. For example, the villages
with equal areas are difficult to find, the districts with same number of persons are difficult to find, the

number of members in a household may not be same in each household in a given area.

11
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Let there be N clusters and M, be the size of i” cluster, let

Suppose that n clusters are selected with  SRSWOR and all the elements in these selected clusters are

surveyed. Assume that M,’s (i=1,2,...,N) are known.

Population

A
......... Population
N clusters

N Clusters

A
......... Sample
n clusters

n Clusters

Based on this scheme, several estimators can be obtained to estimate the population mean. We consider

four type of such estimators.
12
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1. Mean of cluster means:

Consider the simple arithmetic mean of the cluster means as
= 1
o= Z 7,

E(7)=3 27

I

NMZ

N
= M
#Y (where Y = E —
i=1

0

i

The bias of ¥, is

1 ¥ _
=—VZ(M,-—M)(%—Y)

0 i=1
_ [Nl
M, Y

Bias ()=/c) =0 if M, and y, are uncorrelated .

The mean squared error is
MSE ():/C ) =Var ():/C ) + [Bias ():/C )T

2
Nn M,

where
‘—_Z@"
Sy =2 1Z(M ~M)(y,-Y).

13
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An estimate of Var(;c) is

N—I’l 2
Sp

@(i): Nn

2

where s, :%Z(Tzc —)=/C) .

2. Weighted mean of cluster means

Consider the arithmetic mean based on cluster total as

— 1 &, , —

Ve _WH Miyi
EG) =Y —E(FM)
n‘a M
n 1 &,
_;VO - iYi
—_ZZJ’U
M, T3

=Y.

Thus ¥, is an unbiased estimator of Y. The variance of 3, and its estimate are given by
: &M,
Var(y.)=Var| — ) —,
) (n L y,)
_N-n
Nn

*2
Sb

— * N_n %2
Var(y.) = s
(yc) N b

where

1i(Mﬁ __j

*2 1 ! Ml J— —
Sp = —= ViV
i=1

n—-1<\ M
E(s,})=S,".

Note that the expressions of variance of ¥, and its estimate can be derived using directly the theory of

SRSWOR as follows:

14
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N_lt—l
N-n 1 &(M,_ Y
= —y, Y
Nn N 15\ M
N—nS*z
Nn

Since

E(s,)) = E[ Z—Z):|
n-— 111
L”_ j

11 yl V.

1 N
CN- 1,_1(1\7
:S;Z

\<
~<
L/N

So an unbiased estimator of variance can be easily derived.

3. Estimator based on ratio method of estimation

Consider the weighted mean of the cluster means as

It is easy to see that this estimator is a biased estimator of population mean. Before deriving its bias and
mean squared error, we note that this estimator can be derived using the philosophy of ratio method of

estimation. To see this, consider the study variable U, and auxiliary variable V, as

15
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U[:+
M
V::%i:l,l...,N
M
N
qa g 2M
V=—>»V=—=—-=1
N;’ N M
I
u=— lxli
niq
B
vV =— Vi.
=

Since the ratio estimator is biased, so y. is also a biased estimator. The approximate bias and mean

squared errors of ¥ can be derived directly by using the bias and MSE of ratio estimator. So using the

results from the ratio method of estimation, the bias up to second order of approximation is given as

follows
w. N-=n(S* S )=
Bias(y, )= v U
7.) Nn (Vz UVJ
_N-n Sj—Siv U
Nn U
_ N 1 N
where U:—ZUZ. = N_ZMl_l
i=1 i=1

16
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The MSE of 3. up to second order of approximation can be obtained as follows:

N-n

MSE(7") = » (2 +R*S?-2RS,,)

i=1

1 &My 1 & Y
where S° = i~ SN'My
” N—IZ( NI & j

Alternatively,

—wy N — 1 &
MSE(F) ===~ (U= R,J)

N 2
2 M.y,
SIS VA
Nn N-1<\M ) |7 NM

An estimator of MSE can be obtained as

MSE(T )=~ "

2
1 (M) e
The estimator y

. 1s biased but consistent.

17
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4. Estimator based on unbiased ratio type estimation

.= 1 & , :
Since y, = —Z ¥, (where y, = ;i Z ;) 1s a biased estimator of population mean and

i=1 i 1=l

= N-1
Bias(y,) = —L ]Sm
M, ’

_ (Mg
NM )™

Since SRSWOR is used, so

1 — 1
S =—— M, -m)(y,-y,), m=—) M,
. N—1;( ,=m)(,~7.) nZ
1s an unbiased estimator of
1 & =
m)’z:n IZ(M,'_M)(J’,-_Y)’
—1 g

i€, E(5,5)=5,5.

So it follow that

EG)- Y——[N

M
or E{ }
So

yc yc NM my

is an unbiased estimator of the population mean Y.

jE(S )

This estimator is based on unbiased ratio type estimator. This can be obtained by replacing the study

i

. . M. - . . M . .
variable (earlier y,) by ﬁ’)_/l. and auxiliary variable (earlier x,) by 7 The exact variance of this

estimate is complicated and does not reduces to a simple form. The approximate variance upto first order

of approximation is

S L) M)

i=1 =1

=

18

Page 30 of 101



A consistent estimate of this variance is

2
n

. 1 &|( M, _ _ 1 & ;M"
Var(yc ):n(n—l)z (ﬁyi_yc)j_ Wzyi M; -

i1 i=1 n

The variance of 3.~ will be smaller than that of 3. (based on the ratio method of estimation) provided

. . My M. . 1 & 1 &
the regression coefficient of —&+ on —- is nearer to — E ¥, thanto — E My,
M M N i=1 Mo i=1

Comparison between SRS and cluster sampling:

In case of unequal clusters, ZM . 1s a random variable such that

E(ZMJ =nM. i:l

i=l1

Now if a sample of size nM is drawn from a population of size NM , then the variance of corresponding

sample mean based on SRSWOR is

NM —nM S*
Var(y. = — —
(yszes) NiL Vi
_N—nS_2
Nn M’

This variance can be compared with any of the four proposed estimators.
For example, in case of

. 1 n
v e M_
7. nMZ, A2
J— N—I’l *)
Var = S
(yc) N}’l b

The relative efficiency of ¥, relative to SRS based sample mean

E= Var(ys)
Var(y;)
52
s

For Var(y,) < Var(Js), the variance between the clusters (S,?) should be less. So the clusters should be

formed in such a way that the variation between them is as small as possible.

19
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Sampling with replacement and unequal probabilities (PPSWR)

In many practical situations, the cluster total for the study variable is likely to be positively correlated with
the number of units in the cluster. In this situation, it is advantageous to select the clusters with probability
proportional to the number of units in the cluster instead of with equal probability, or to stratify the clusters
according to their sizes and then to draw a SRSWOR of clusters from each of the stratum. We consider
here the case where clusters are selected with probability proportional to the number of units in the cluster

and with replacement.

Suppose that n clusters are selected with ppswr, the size being the number of units in the cluster. Here

P is the probability of selection assigned to the i” cluster which is given by

Then this estimator can be expressed as

N
Z“iyf
i=1
th

where «, denotes the number of times the " cluster occurs in the sample. The random variables

Y =

c

a,,a,,...,a, follow a multinomial probability distribution with

E(a,)=nP, Var(a,)=nP(1-P)
Cov(e,a))==nBP,, i#].

Hence,

_ =l j=1 _)7

Thus Y, isan unbiased estimator of Y.

20
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We now derive the variance of Y.

From Y =

Var(i):%{ZN:Var(a )y +ZCOv(al,a .Y, }

i=l i#j

N
=—| 2 R(1-B)¥; —ZBP,WJ}

L i#]

An unbiased estimator of the variance of Y, is

Var(Y) =

c

which can be seen to satisfy the unbiasedness property as follows:
Consider

framio-D]
Lm 1)[2(” . ﬂ

= n(nl_l) [E(iz::a;)_ﬁzj—nf/ar(i)_nf2}

where E(e,) =nP,Var(a,) =nE(1-F),Cova;,a;)=—nFP,i* j

1 . e
E{”(”—l) = ) } n(n _1){Z Py —n—3 P(3,-Y) -n¥

i=1 n i

g 1){21’,@? Y2>——ZP<y, Y)}

=(n1_1){ZP,<, 7y ——ZP(y, Y)}

i=1

1 & o

- (n_l);B(yz _Y)
=Var(i).

21
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Two Stage Sampling (Subsampling)

In cluster sampling, all the elements in the selected clusters are surveyed. Moreover, the efficiency in
cluster sampling depends on size of the cluster. As the size increases, the efficiency decreases. It
suggests that higher precision can be attained by distributing a given number of elements over a large
number of clusters and then by taking a small number of clusters and enumerating all elements within

them. This is achieved in subsampling.

In subsampling
- divide the population into clusters.
- Select a sample of clusters [first stage}

- From each of the selected cluster, select a sample of specified number of elements [second stage]

The clusters which form the units of sampling at the first stage are called the first stage units and the
units or group of units within clusters which form the unit of clusters are called the second stage units or

subunits.

The procedure is generalized to three or more stages and is then termed as multistage sampling.

For example, in a crop survey
- villages are the first stage units,
- fields within the villages are the second stage units and

- plots within the fields are the third stage units.

In another example, to obtain a sample of fishes from a commercial fishery
- first take a sample of boats and

- then take a sample of fishes from each selected boat.

Two stage sampling with equal first stage units:
Assume that
- population consists of NM elements.
- NM elements are grouped into N first stage units of M second stage units each, (i.e., N
clusters, each cluster is of size M )

- Sample of n first stage units is selected (i.e., choose n clusters)
1
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- Sample of m second stage units is selected from each selected first stage unit (i.e., choose m
units from each cluster).

- Units at each stage are selected with SRSWOR.

Cluster sampling is a special case of two stage sampling in the sense that from a population of N

clusters of equal size m = M, a sample of n clusters are chosen.
If further M =m =1, we get SRSWOR.

If n= N, we have the case of stratified sampling.

Y, + Value of the characteristic under study for the j" second stage units of the i" first stage
unit; i=12,...,N; j=1,2,...,m.

«th 1sr

s 1 : . .
Y = MZ Y, : mean per 2" stage unit of i stage units in the population.

= 1 S 1 & = . .
Y= —Z Z V= —Z)_/l. =Y,,y : mean per second stage unit in the population
MN 5 Jj=1 N5

& . . .
= —Z », : mean per second stage unit in the i" first stage unit in the sample.

Yi
n‘s
_ 1 n m 1 n _ _ .
y= —ZZ Yy = —Z ¥, =,, . mean per second stage in the sample.
mn -y j= nio
Advantages:

The principle advantage of two stage sampling is that it is more flexible than the one stage sampling. It
reduces to one stage sampling when m =M but unless this is the best choice of m, we have the
opportunity of taking some smaller value that appears more efficient. As usual, this choice reduces to a
balance between statistical precision and cost. When units of the first stage agree very closely, then
consideration of precision suggests a small value of m . On the other hand, it is sometimes as cheap to
measure the whole of a unit as to a sample. For example, when the unit is a household and a single

respondent can give as accurate data as all the members of the household.

A pictorial scheme of two stage sampling scheme is as follows:
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Population (MN units)

A
Population
......... N clusters
(large in
number)

N clusters

First stage

......... sample
n clusters

(small in

number)

n clusters

Second stage
sample
m units
n clusters
(large number
of elements
from each
cluster)

mn units

Note: The expectations under two stage sampling scheme depend on the stages. For example, the
expectation at second stage unit will be dependent on first stage unit in the sense that second stage unit

will be in the sample provided it was selected in the first stage.

To calculate the average
- First average the estimator over all the second stage selections that can be drawn from a fixed
set of n units that the plan selects.

- Then average over all the possible selections of 7z units by the plan.
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In case of two stage sampling,

E@) = E[E®©)

A VoooN
average| |average| |average over
over over all| |all possible 2"stage
all 1" stage | [selections from

samples| |samples| |a fixed set of units

In case of three stage sampling,

E0)=E, [Ez {E3(63)H.

To calculate the variance, we proceed as follows:

In case of two stage sampling,
Var(9) = E(0-60)’
= EE,(0-0)
Consider
E,(0-0) = E,(6*)—20E,(0)+6"
- [{Ez(é}z + Vz(é)} _20E,0)+6*

Now average over first stage selection as
N A T2 A A
EE,(0-0) =E | E,(0) | +E[V,(0)|-20E E,(0)+ E,(6")
A2 N
=k |:E1 {Ez (9)} -6 } +E, |:V2(9):|

Var(0) =V, E,(0) |+ £ [1,0) |

In case of three stage sampling,

Var() =V, [E 1E, (é)}] L E, [VZ (E, (é)}} 1 E, [Ez {1/3(@)}]
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Estimation of population mean:

Consider y =7, as an estimator of the population mean Y.
Bias:

Consider

E()_}) = El [EZ(J_}mn)]
=E, [E2 7., |i):| (as 2" stage is dependent on 1" stage)

=E [Ez 7, |i)] (as y, is unbiased for ¥, due to SRSWOR)

Thus Yy, isan unbiased estimator of the population mean.

Variance

Var(3) = E[V,(3|i) |+ [ E, (3 /)]

e[| E

[ >rG, Iz)}V{lZn:Ez(ﬁ/i)}
IR
-3 [i— jE(S)|z+V<yc

(wherey, is based on cluster means as in cluster sampling)

where S ii 2= ! ii(Y —17)
N i=1 l N(M_l) i=1 j=1 ! l
S,f ZLZN“(Y[._Yf
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Estimate of variance

An unbiased estimator of variance of ¥ can be obtained by replacing S, and S‘f by their unbiased

estimators in the expression of variance of y.

Consider an estimator of

S2 :iis2
W N p= i
M 2
5 _
where §; =—_IZ;(yU—Yl)
=
as 5! :l s}
nio
where s” =ﬁ2(yl/ -y,

So
E(S))=E, E, (5]

1)

n i=1
1 n
=F, ;Z[E2 (s; |z)]
i=1
=k 1 S? (as SRSWOR is used)
nis

I
2|>—a §|>—~
M=
=]~

M= <
A

I
==
2

Il
9%}
o

=

—2 - . . =2
so 5, is an unbiased estimator of S .

Consider
1 n
2= 5 _ )
i El =)

as an estimator of
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So

SR SIS R S P
E(s,,)_n_lE[;(y,- y)}
(n-1E(s}) = E{ifz—nﬂ

A5
{

} Var(7)+{E@) |

=E

5=
|
== 7
K%
(S
oy
I\)
%f—/
I—I
l—|
= |»—~ S
|
z|—- 2=
N—
9%}
SN
7\
SHES
|
<[~

1
—_— N_
(L_LJ&%LZK@ o (LL)S;{L_ 1)
m M N5 n N m M
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Thus

Allocation of sample to the two stages: Equal first stage units:

The variance of sample mean in the case of two stage sampling is
—~ 1(1 1)% 1 1
Var(y)=—| ——— |S2 +| ——— |S,.
&) n(m Mj "’ (n Nj ’

It depends on S,f,g > nand m. So the cost of survey of units in the two stage sample depends on

w

n and m.

Case 1. When cost is fixed

We find the values of #n and m so that the variance is minimum for given cost.

(I) When cost function is C = kmn

Let the cost of survey be proportional to sample size as
C =knm

where C is the total cost and % is constant.

When cost is fixed as C =C,. Substituting m = % in Var(y), we get
n

M| N nC, "
e Su| (S _ kS,
=—|S, - —| == .
n M N C,
T2

This variance is monotonic decreasing function of #n if |S>—=~ |>0. The variance is minimum
"M

<2 2
Var@)zi{sg_&}s_ulk_ngz
n

when »n assumes maximum value, i.e.,

n= % corresponding to m=1.
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S? . .. : . . .
If (sz —ﬁ ] <0 (i.e., intraclass correlation is negative for large N), then the variance is a monotonic

. . . . . ) . C
increasing function of n, It reaches minimum when » assumes the minimum value, i.e., n= ﬁ

(i.e., no subsampling).

(I) When cost function is C = kn+k,mn

Let cost C be fixed as C, =kn+k,mn where k and k, are positive constants. The terms &, and £,

denote the costs of per unit observations in first and second stages respectively. Minimize the variance of

sample mean under the two stage with respect to m subject to the restriction C, = kn+k,mn .

We have

)+ S\ k3 SR
G {Var(yhﬁ”} =k, [S,f —ﬁ}kzsj +mk, [S,f - M]+ o

2

When [S,f —S—Wj >0, then
M

2 2
5y S S, S 5 [k
C{Var(yhﬂ{ k,[SZ —ﬁ] +«/szf] +Nmk2(si —ﬁj —\/7}

which is minimum when the second term of right hand side is zero. So we obtain

The optimum » follows from C, =kn+k,mn as

CO
k, + by

n=

2

When (sz _5, jﬁ 0 then
M

545 S )irs 52) . kS
G {Var(yhﬁ”} =k, [S,f - A/}]H@Sj +mk, (sz —ﬁ]w_

m
is minimum if m is the greatest attainable integer. Hence in this case, when
. . G,
C, 2k +k,M;m=M and n=—"—.
k, +k,M
. C,—k .
If C,>2k +k,M; then m= and n=1.

2
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If N islarge, then Ej ~S*(1-p)

Case 2: When variance is fixed

Now we find the sample sizes when variance is fixed, say as V.

1 _ _
v, :_[i_ijsj +[l_ij5h2
n\m M n N

5422 )
m M
—=>n=

2

V,+ 0

N

So
<2
C=kmn=km 5 + gz .

Vb | Vy+ok
N N

<2
If (Sf —ﬁj>0, C attains minimum when m assumes the smallest integral value, i.e., 1.

<2
If (S,f —%j <0, C attains minimum when =M.

Comparison of two stage sampling with one stage sampling
One stage sampling procedures are comparable with two stage sampling procedures when either

(i) sampling mn elements in one single stage or
(i1) sampling ﬁn first stage units as cluster without sub-sampling.

We consider both the cases.

10
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Case 1: Sampling mn elements in one single stage

The variance of sample mean based on

- mn elements selected by SRSWOR (one stage) is given by
V)= = )5

- two stage sampling is given by

1(1 1)= (1 1
V(3. )=—| ——— |82 +]| ——— | S2.
(rs) n[m Mj " [n N] b

The intraclass correlation coefficient is

2 o2
_MN-DS,-NS, 1 _
(MN —1)S°

and using the identity

N N

PRSP NCTESAED W NSOk

i=l j=1 i=l j=1 i=l j=1

| wxu | u
where Y:mZZyy,Y[ :HZ);U__
We have

(MN -1)S*p=N(M 1S’ + M (N -1)S;
and

MN —1)S* =—NS? + M (N -1)S?
W b

—_— 2 <
2 _ % [1+(M -1)p] (Eliminating 5°)
- (MN-1
S? = S*(1-p).
2 (MNJ (1-p)

Substituting S; and E > in Var(yy)

— \_(MN-1 S_2 _ m(n-=1) N-nm = M-m
V(y”)_( MN jmn{l M(N—1)+p{N—1M(M R H

When subsampling rate % is small, MN —1= MN and M —1~ M, then

_ S?
V(Virs) =
mn

V()7TS)=%{1+p[%m—lﬂ.

11
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The relative efficiency of the two stage in relation to one stage sampling of SRSWOR is

=4 0) :1+p(—N_nm—1j.
N-1

Var(yes)
If N-1= N and finite population correction is ignorable, then Z_Y ~ NA_]” ~1, then
RE =1+ p(m-1).

Case 2: Comparison with cluster sampling
Suppose a random sample of % clusters, without further subsampling is selected.

The variance of the sample mean of equivalent mn/M clusters is
M 1

Var(y,)=| —-— |S2.
(yLl) [mn N] b

The variance of sample mean under the two stage sampling is
I(1 1)< 1 1
Var(yrs) = —[———) . +[———) Sy
n\m

So Var(y,,) exceedes Var(y,;) by

{54
n\m M

which is approximately
<2

l(M—IJ/JSZ for large N and (S;—S—W]> 0.
n\ m M

MN-1 §°

where S7=———— = _[1+ p(M -1
b M(N—I)M[ P( )]
—  MN-1
S?= S*(1-
v TUN (I-p)

So smaller the m /M , larger the reduction in the variance of two stage sample over a cluster sample.

<2

When {S 2 - i; ]< 0 then the subsampling will lead to loss in precision.

12
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Two stage sampling with unequal first stage units:

Consider two stage sampling when the first stage units are of unequal size and SRSWOR is employed at
each stage.

Let

v, + value of j™ second stage unit of the i first stage unit.

M, :number of second stage units in i first stage units (i=1,2,..., N).

N
M, = ZM ; - total number of second stage units in the population.
i=1

m, :number of second stage units to be selected from i” first stage unit, if it is in the sample.

= Z m, : total number of second stage units in the sample.
i=1

_ 1 &
yi(m,r;Z

i J=1
_ 1 u
AT
— N =
r=—=>5=7,

The pictorial scheme of two stage sampling with unequal first stage units case is as follows:

13

Page 46 of 101



Population (MN units)

A
Population
......... N clusters

N clusters

First stage

......... sample
n clusters

(small)

n clusters

Second stage
sample
n clusters
(small)

14
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Now we consider different estimators for the estimation of population mean.

1. Estimator based on the first stage unit means in the sample:
15y
ne Yiem)
Bias
_ 1 n _
E(ys,) = E|:;Zyi(m;):|
i=1
1¢ —
;ZEz (yi(m‘)):|

_g, {
G . . .

=E, {— Y/} [Since a sample of size m;, is selected out of M, units by SRSWOR]
n
N

=

L
N £

J‘<1I

?A
£Y.

So ¥, is a biased estimator of Y and its bias is given by

Bias (yg,) = E(J_’sz)_)7

N 1N _
= Z __MZ; My,

i=1

| M3 Em )

1 N - =
_W;(Mi—M)(Yi—YN).

This bias can be estimated by

Bias(Fyy) === ( - 1) Z( =)y = Vs2)
which can be seen as follows:

E| Bias(7,) | = —]X]—A_;El {ﬁzzs {(M, = )T,y = T2)/ n}}

N-1
=———=F M, —m)(Y, -
Nii [n 12( n)( yn)}
1 & == =
NM;(, )X =Yx)
=Yv-¥
where ;n :1271
ns
15
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An unbiased estimator of the population mean Y is thus obtained as

Vsy t+ NM N_ IZ( _m)(yl(mz) Vs2) -

Note that the bias arises due to the inequality of sizes of the first stage units and probability of selection

of second stage units varies from one first stage to another.

Variance:

Var(yy,) = E| Var(ys,|n) |+ Var| E(y;,|n) |

1 _ 1 n _ .
=Var [_Z)’,] + E[_zz Var(¥im, |Z)}
n - n g

The MSE can be obtained as
MSE(¥,) = Var(¥s,) + | Bias(7,,)] -

Estimation of variance:

Consider mean square between cluster means in the sample

1 & ’
Slfzj l(y,(m,) ysz) :

It can be shown that

E(Sb)ZSb +ﬁz ;—ﬁ i
i=l1 i i

& —
Also s’ =—Z(y,-,-—)’,-<m,->)2
RS

1

- _
E(s))=8'=——=> (v, - 1)’
M.—lz:; d

1

o 3w S

Thus

E(s?) =5 +EE (mL_MLJS}
i=1 i i

16
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. . 2 .
and an unbiased estimator of S is

So an estimator of the variance can be obtained by replacing S, and S’ by their unbiased estimators as

_ I e, (L 1
Var(Vs,)=| —=—|S; +—2 | ——— 5.
ar(ys,) [n NJ " Nn i—l[mi M] l

1

2. Estimation based on first stage unit totals:

= —* 1 < Mi-)_/i(mi)
Y = = — _—
Vs2 n; il
T
e i i(mi)
M,
where u, =—".
M
Bias
" 13
E(ysz)zE - uyl(ml)
n i=1
1&
:E - ulE (yt(ml) l)
n i=1
1S =
zE{— ulYl}
n i=l1
1Y -
=—2ul
NS
=Y

Thus ¥, is an unbiased estimator of Y .

Variance:

[ Var(3,|n) |

1
=Var[ ZuY} +E Zu Var(y, .
n’
=——— — ———5;
(I’l N) b NZ 1( j i

Var()_/;z) =Var

0]

17
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M‘ —_—
where S} =ﬁ2(yij -Y)

i J=1

. 1 & o
S,? :—IZ(uiYi -Y).
“15

3. Estimator based on ratio estimator:

n
. ZMl-y,-(m,-)
__ —kk _ l=l

Y _ySZ - n

This estimator can be seen as if arising by the ratio method of estimation as follows:

Let y: = UV mi)
. M.
x, :Tl, l:1,2,..,N
M

be the values of study variable and auxiliary variable in reference to the ratio method of estimation. Then
—k 1 2 * G
y == Z Vi =Vs2
n o
X = lZn: X, =i,
n — i n
=. 1& .
X*=—>» X =1
o

The corresponding ratio estimator of Y is

<|

* _ e sk
_Xr=221=73

n

Y, =

=

So the bias and mean squared error of ¥, can be obtained directly from the results of ratio estimator.

Recall that in ratio method of estimation, the bias and MSE of the ratio estimator upto second order of
approximation
is

18
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" ST(CH-2pC,C)

Bias (5,) ~

_7 [ Var(x) Cov(x, y)}
X’ Xy

MSE (Y,) ~[ Var(y) + R*Var(x)~2RCov(x. 7) |

where R =

><|| ~

Bias:

The bias of ¥, up to second order of approximation is

Bias(y;,) = Y{Va’”(xsz) Cov(xsz,ysz)}

X? XY

h — . h f -1. . bl . .1 - - _ 1 I
where Xg, is the mean of auxiliary variable similar to yg, as X, —Zin(ml.).
i=1

Now we find Cov(Xy,, Vs, ).

1 o .
COV('XSZL)/SZ) CO |: (n ulxl(ml)’ Zuiyi(mi)j:|+E|:C0V[ Zuz l(ml)’ Zuiyi(mi)]:|
i=1 i=l

i=1
1<

13 _ _ .
= Cov |:_Z (xl(mt)) Zu E(yl(”ll))} + E{ 2 leuizcov(xi(mi) 7yi(mi))|l:|

n i

1 o 18 o 1S (11
=Cov| =Y uX,—>uY |+E|=> u’'| —— S,
|:l’l — i i I’l; i /:| |:n2 ; i (m[ M jsuy:|

1

where
. 1 i - - - -
xv=— (uiXi_X)(uiYi_Y)
" N-1"35
1 & — —
ixy :Mi_ ;(XU_X;)()/U_YI)

Similarly, Var()?;) can be obtained by replacing x in place of y in Cov()_c;,)_/;z) as

Var(%,) = [Lﬂ S7eSu [ J
n N3

where S?=—— E uX —X)>
bx N—l iZI( i“ri )

1 &
LI o o
Y —1;( )~

19
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Substituting Cov()?;,)_/;) and Var(fgz) in Bias(i;;), we obtain the approximate bias as

e (Lo LY(Se S ), L) (1 LSS,
Bias(y,) =Y || == — || - [+ 2 | ——— Bl
(Vs2) |:(n N](Xz XY] nN;{ i (mi M, j[Xz XY

Mean squared error

*2

MSE (yg, ) = Var(yg,) — 2R Cov(Xs,, Vs, + R *Var(Xs,)
. 1 1 1 1
Var(y.,) = — _—
(¥s2) (n Nj by T AN 4 (m Mj iy
. 1 §7 4 1 1 1
Var(xg,)=| — — ———15;
( SZ) (l’l Nj br N m Mj ix
—k Kk 1 1 * N
COV(xszaySQ) = ; N x 21 - T ixy
where

. 1 & - -
Sy =—_1;(“iYi—Y)2

5;? ——1 > (5, - T
iy T _ Z:‘(y,j [)
i J=

%
i

R = L Y.
X
Thus
MSE(f**)z(l—i](S ~2R’S, +R”S?) Lﬁ“ | 1oL (S2-2R’S,, +R”S})
S2 n N bxy n N p= i Ml. iy ixy x )|
Also

Estimate of variance

Consider

n

. 1 _ - _ —x
Sty = EZ |:(u/‘yi(mi) ~Vs2 ) (uixi(mi) ~ Xs2 )]

i=l1

Sy Z;Zn:[(xi/_ z(mz))(yl/ y'(m'>)]

20
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It can be shown that

. R R S A |
E(bey) = bey +W2ui ;_V Sixy

E(Sixy) = Sixy'
So

Thus

Also

A consistent estimator of MSE of ¥, can be obtained by substituting the unbiased estimators of

respective

statistics in MSE ()7:;) as

T x 1 1 * * ok *) ok
MSE(ys,) = [;—Nj(sbi -2r Spoy T 2sbj)
+LN ui2 [L —MLJ(S; — 2r*sm + r*zsi)
A= m; i )
1 1 1 &/ _ o\
r (;_ijzl(yi(mi) _r*xi(mi))
+LN { f(L_MLj(s;—Zr Slxy+7"282)i|
n i=1 ml i
where 7 =%
xS2

21
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Double Sampling (Two Phase Sampling)

The ratio and regression methods of estimation require the knowledge of population mean of auxiliary
variable () tofestimate the population mean of study variable ( ). If iformation on the auxiliary

variable is not available, then there are two options — one option is to collect a sample only on study

variable and use sample mean as an estimator of population mean.

An alternative solution is to use a part of the budget for collecting information on auxiliary variable to
collect a large preliminary sample in which x; alone is measured. The purpose of this sampling is to
furnish a good estimate of X . This method is appropriate when the information about x; is on file
cards that have not been tabulated. After collecting a large preliminary sample of size 'mnits from

the population, select a smaller sample of size n from it and collect the information on y. These two

estimates are then used to obtain an estimator of population mean .Y This procedure of selecting a
large sample for collecting information on auxiliary variable x and then selecting a sub-sample from
it for collecting the information on the study variable y is called double sampling or two phase

sampling. It is useful when it is considerably cheaper and quicker to collect data on x than y and

there is high correlation between x and .y

In this sampling, the randomization is done twice. First a random sample of size 'ns drawn from a

population of size N and then again a random sample of size n is drawn from the first sample of size

'

n

So the sample mean in this sampling is a function of the two phases of sampling. If SRSWOR is
utilized to draw the samples at both the phases, then

- number of possible samples at the first phase when a sample of size n is drawn from a

N
']:MO, say.

population of size N is [
n

- number of possible samples at the second phase where a sample of size » is drawn from the
first  phase sample of size 'ns ( T= M,, say.
n

1
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Population of X (/V units)

Sample
(Large)
N 'units

M, samples

Subsample
(small)
np units

M, samples

Then the sample mean is a function of two variables. If 7 is the statistic calculated at the second

phase such that 7,,i=1,2,..,M,, j=1,2,..,M, with P, being the probability that i sample is chosen
at first phase and j” sample is chosen at second phase, then

E(r) = E [ E,(7)]
where E,(7) denotes the expectation over second phase and E, denotes the expectation over the first

phase. Thus

My M,

E(r)=2.> Bz,

i=l j=1
M, M,

=Y > PP, 7, (using P(ANB)=P(A)P(B/ A))
i=1 j=1

MO Ml

= Z E Z Pty
i=1 =1
—_—

st
1% stage ond stage
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Variance of ¢
Var(r) = E[r - E(z)[
= E[(t - E, () +(E,(0) - E(r)[
=E[r-E,(0)] +[E,(1)-E(0)] +0
= EE,[ 1 Ey(t)] +[E,(r) - E(z )T
= EE,[t—E,(0)] +EE[E () -E@)]
\’

constant for £,
E V@] E [Ex0) - E(E@)]
=E [1,(O]+ K[E, ()]

Note: The two phase sampling can be extended to more than two phases depending upon the need and

objective of the experiment. Various expectations can also be extended on the similar lines .

Double sampling in ratio method of estimation

If the population mean X is not known then double sampling technique is applied. Take a large

initial sample of size n' by SRSWOR to estimate the population mean X as

S 1 &
X=Xx'= —'Z X; -
nia
Then a second sample is a subsample of size n selected from the initial sample by SRSWOR. Let

y and X be the means of y and x based on the subsample. Then E(X")=X, E(X)=X, E(¥)=7.

The ratio estimator under double sampling now becomes

~ _ -
Yoo ==Xx".

=<l

A

The exact expressions for the bias and mean squared error of Y,, are difficult to derive. So we find

their approximate expressions using the same approach mentioned while describing the ratio method

of estimation.
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Let

E(go):E(Sl):E(gz):()
ENN 8 S U
E(‘C"l)_(n N]Cr

E(ge,) = %E(f - X)(x'-X)

- B [, - DB ]

E(g,6,)=Cov(y,x")
= Cov[E()_/ |n"), E(x"| n')] +E[C0v(;7,f') |n ']

=Cov| Y, X |+ E[Cov(y",X")]
= Cov[()_/',)?]

where V' is the sample mean of y's based on the sample size »'.
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E(ee,) = fi Cov(7,T)

_l_LJi
n N)XY
(1 1Y) S5,
" NPXTY
1 1
=|———|pC.C
(n ijw

E(e) = %Var@)

:%[Vl {EF )} +E (13, |n)}]

1. 1 1),
oo

where s'y2 is the mean sum of squares of y based on initial sample of size n'.
1 S 3!
E(ge,) = ?Cov(x,x )
1 v ' vl '
:?[COV{E(X |n"), E(x"'|n )} +O]
1 —
= ? VClV(X ')

where Var(X") is the variance of mean of x based on initial sample of size n'.
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Estimation error of Y,,

Write ?Rd as
2 (I+¢)
T = 1re)0*e)
=Y(+g)1+&)1+eg)™"
=Y(+g)(1+&)1-¢g +& —..)

vV 2
=Y(+e,+e,+6,6,—€ —€,6—6& +¢&)

L)?

upto the terms of order two. Other terms of degree greater than two are assumed to be negligible.
Bias of Y,,
EY,)=Y V[14+0+0+E(5,6,) - 0- E(5,6) — E(£,6,) + E(&]) ]

Bias(YRd) = E(Ym) -Y
=Y E(e6,) — E(66)) — E(£,6,) + E(glz)]

_Y[
_ql( L1 (it B SR P S A T P
= Hﬂ' ijCny (n N)prCy [n' NJCX+(}1 NJCX}

11
Y ;-—)(cj pC.C,)

~|

n'
(11

:Y[———JCX(CX—pr).
n n

The bias is negligible if 7 is large and relative bias vanishes if C>=C_, i.e., the regression line

xy?
passes through origin.

MSE of 1, :

MSE(Y,,)=E(Y,, -7
=Y’E(¢g,+&,—¢,)° (retaining the terms upto order two)
= YZE[gj +el +el+2¢,8,— 26,6, — 28152]

2 2 2 2 2
=Y E[go +& +&; +26,6, —2¢8,€ —282]

AL Dol DL DL oL L
n N n N n' N n' N ’ n N !
1 1 1

:YZ(;—WJ(C +C;-2pC,C,)+Y* (n———jc 2pC,-C,)

= MSE (ratio estimator) +7Y? (i—lj(zpcc C_z)
n n

6
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The second term is the contribution of second phase of sampling. This method is preferred over ratio
method if
2pC.C,-C 2>0
1C,

Choice of » and »'
Write

MSE(Yd)—K+L
n

where V' and V' contain all the terms containing n and n' respectively.

The cost functionis C, =nC+n'C' where C and C' are the costs per unit for selecting the samples

n and n' respectively.

Now we find the optimum sample sizes » and »' for fixed cost C;,. The Lagrangian function is

(/):K+L'+/1(nc+n'C'—Co)
n n

a—g0:0:>/’tC:L
on n
9 0= 0= L
on' n"

Thus ACn’ =V
r

AC

or A nC=A+C.

Similarly VA n'C'=\V'C".

or n=

Thus

[T

G

and so
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Optimumn=L\/Z=n , say

Jrc+vc\Ne ™
C, V'

civeNe "

2 voor
Var,, (Ye,) =—+—
opt nopt

_(rc+rey

CO

Optimum »'= say

Comparison with SRS

_ . =, _ . . C
If X isignored and all resources are used to estimate Y by ¥, then required sample size :FO'

st ¢S

Var(y)=——=—

c,/C G
Var(p) _ CS)

Relative effiiency =

Var,, (T,) (VC+Cy

Double sampling in regression method of estimation

When the population mean of auxiliary variable X is not known, then double sampling is used as

follows:

- A large sample of size n' is taken from of the population by SRSWOR from which the

A

population mean X is estimated as X', i.e. X =X".

- Then a subsample of size #n is chosen from the larger sample and both the variables xand y

are measured from it by taking X' in place of X and treat it as if it is known.

Then E(x"\ =X, E(xX)=X, E(y)=Y . The regression estimate of ¥ in this case is given by

%] =7+p(E'-T)
2, Se-90-»

. ; ) S .
where f=—-= - is an estimator of =-=- based on the sample of size .

% Z('xi _3?)2 *

i=1

Page 62 of 101



It is difficult to find the exact properties like bias and mean squared error of Y., so we derive the

regd >

approximate expressions.

Let
x-X _ —
51=T:>x=(1+51)X
¥-X  _, -
&= e =>x'=(+¢&)X
xy_ Xy _
& =——0F—— >S5, = (1 +g3)Sxy
xy
PR
g =" =5l =(l+¢,)S:
5 \ )
E()=0,E(¢,)=0,E(&)=0,E(g,)=0
Define

o =E[(F-X) (y-1)]

My =E[f_)_(]3

Estimation error:

Then
Zegd = .)_;+ﬂ}\(f'_f)
Sxy(1+g3)

(e,-8)X
S’(1+g)

Y
=y+X szy (1+&5)(e, _51)(1+g4)*1

X

=7+ XP(+&)e,—&)l—¢,+& —..)
Retaining the powers of ¢'s upto order two assuming |g3|<1, (using the same concept as detailed in

the case of ratio method of estimation)
Y,

reed =V + X B(g, + 6,6, — 6,6, — & — & +EE,).
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Bias:

The bias of )%r ead upto the second order of approximation is

E(Y,.) =T + X B[E(,8,) - E(6,6,)— E(c.6,) + E(66,)]

reg

d):E(Zegd)_Y

1 1)1« @-X)s,-S,)
(z‘ﬂﬁz( %5 ﬂ

xy

(L 1)1 E-X)s0-SY)
(n' NJNZ( XS3 J

Bias(?

reg

_ y/{

(% - X)(s —Sf)]

gl (Lo (LN (11 ay (1 1) 4
- ﬁ ] v ] vo2 v + vo2
n' NJXs, \n' NJX \n N)Xs, n NJXS

Mean squared error:
MSE(Y, ) = E(T, .~ T
=[7+pE-m-T|
=E[(7-D)+ Xp(+e)e,~e)1-e,+6 —) ]

Retaining the powers of ¢'s upto order two, the mean squared error upto the second order of

approximation is

10
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2 = = 2
MSE(Y,.,) = E[(J’ V) +XB(e, +6,6, - 6,6, — 6 — 66 + 5154”
=E(F-Y) + X' B'E (] +&;, —26,6,) +2X BE[(F - T )(&, —&,)]

— 1 1)S (1 1)\&8? 1 1)s?
Var(P)+ X p|| ——— | =+ ——— | = 2| ——— | =
ar(y) ﬂﬁn Nj)(2 (n Nsz [n N]X}

+2ﬂy{(L_L)5_f_(L_Ljs_f}
n' N X n N)X
=Var(y)+ f* (1—1]53 —w(l—i,j Sy
n

n n' n

_ 1 1
= Val"(y)'i‘ﬂz (;_;j(ﬂztsxz _2ﬂSxy)
1 1Y(S; N
—Var(F)+| ——— || 225?222
al”(y) (}’l I’l'j(S;: x S? xy}

I 1Y)w (1 1Y(S,Y
)G
{%—%]Si—(%—% P (using S, = pS.S,)

2Q2

1-p*)S: p°S
z( PS, + P —. (Ignoring the finite population correction)

n

A

Clearly, Y, is more efficient than sample mean SRS, i.e. when no auxiliary variable is used.

Now we address the issue that whether the reduction in variability is worth the extra expenditure

required to observe the auxiliary variable.

Let the total cost of survey is
C,=Cn+Cyn’
where C, and C, are the costs per unit observing the study variable y and auxiliary variable x

respectively.

Now minimize the MSE (zegd) for fixed cost C, wusing Lagrangian function with Lagranagian

multiplier A as

11
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S0P pS:

n

+A(Cn+C,n'-C,)

6—4”:0:—%55(1—,32)”01:0

on
% _ S2p* + AC, =0
g 0SS G-
2 2
Thus n= 5,4=,)
G,
S
and n'= )

JAC,

Substituting these values in the cost function, we have

C,=Cn+Cyn'

202

PS,

S*(1-p°
_C 3 ( p)+
CA

o

AC,

or CA =,(CS2(1-p?)+/C,p"S?
1 2
or A:F[Sy‘/qa—ﬁ) + pSy,/cz} .
0

Thus the optimum values of #» and n' are

pSyCO

=2

o = JE| s ca=p+ 084G, |

CoS, 1-p°

. S;(1-p%)

o ™ \/E[Sy«/cl(l—pz) +pSy\/C—2] =

The optimum mean squared error of Zegd is obtained by substituting n=n,,

_ﬁ(alqu(l—pz) +pSy\/C—2)

MSE(Y.

regd )opt =

Co\/Si(l—pz)

S?p*\JC, [Sy (\/C1 (1- p*) + pS,/C, )J
N

IOSyCO

:CL[Sy./cl(l—ﬁ) +pSy\/C72:|2

0

=i—j[1/cl(1—p2) +,o\/CTJ2 =

12
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The optimum variance of ¥ under SRS for SRS where no auxiliary information is used is

s’
CO

Var(ygs )opt =

which is obtained by substituting p=0, ,=0 © MSE (zRS )ope - The relative efficiency is

RE_ Var(ySRS)opt _ CIS;
_ s :
MSE(Y,,,),, Sj[,/cla—pz)ﬁ JFZ}
|
I-p’p 1/2}
<1.

Thus the double sampling in regression estimator will lead to gain in precision if

G, ~

)

13

Page 67 of 101



)y v y
n

e,

2,

e,

2C

Multivariate Ratio Estimator

Let y be the study variable and X, X,,.., X, be p auxiliary variables assumed to be corrected with y .

Further it is assumed that X, X,,.., X are independent. Let ¥,X,,X,,..,X, be the population means of

the variables y, X, X,,..,X,. We assume that a SRSWOR of size n is selected from the population of

N units. The following notations will be used.

where

S? :the population mean sum of squares for the variate X
s; :the sample mean sum of squares for the variate X

S, : the population mean sum of squares for the study variable , y

s; : the sample mean sum of squares for the study variable y,

1

S . _ .
C =7: coefficient of variation of the variate X

i

S . i .
C, =—2: coefficient of variation of the variate ,y

Sy : .
p, =— coefficient of correlation between y and X,

Xl'
L,2,..., . Then thé multevargate ratio estimator of Y is given as follows.
o D ~ P
Yiw :Zwi Ri> sz =1
i=1 i=1
& X
= w, —.
yZ =
22
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(i) Bias of the multivariate ratio estimator:

The approximate bias of Y, upto the second order of approximation is

Bias(YLR’.) = / Y(Ciz -p,CCy).

n
The bias of Y, , is obtained as

S XY
Bias(Y,,) = z w, 7(ci - p.CC,)

i=1

¥f &
=l2w,.ci (C, - p,C,).

n o

(ii) Variance of the multivariate ratio estimator:

The variance of YRi upto the second order of approximation is given by

Var()%Ri) = i?z (Co2 + sz —-2p,C,C).
n

The variance of Y, upto the second order of approximation is obtained as

2 _
Var(Y,,) = iyzz W2 (C2+C?=2p.C,C)).
n

i=1

23
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Varying Probability Sampling

The simple random sampling scheme provides a random sample where every unit in the population has
equal probability of selection. Under certain circumstances, more efficient estimators are obtained by
assigning unequal probabilities of selection to the units in the population. This type of sampling is

known as varying probability sampling scheme.

If Y is the variable under study and X is an auxiliary variable related to Y, then in the most commonly
used varying probability scheme, the units are selected with probability proportional to the value of X,
called as size. This is termed as probability proportional to a given measure of size (pps) sampling. If
the sampling units vary considerably in size, then SRS does not takes into account the possible
importance of the larger units in the population. A large unit, i.e., a unit with large value of Y contributes
more to the population total than the units with smaller values, so it is natural to expect that a selection
scheme which assigns more probability of inclusion in a sample to the larger units than to the smaller
units would provide more efficient estimators than the estimators which provide equal probability to all

the units. This is accomplished through pps sampling.

Note that the “size” considered is the value of auxiliary variable X and not the value of study variable Y.
For example in an agriculture survey, the yield depends on the area under cultivation. So bigger areas are
likely to have larger population and they will contribute more towards the population total, so the value
of the area can be considered as the size of auxiliary variable. Also, the cultivated area for a previous
period can also be taken as the size while estimating the yield of crop. Similarly, in an industrial survey,
the number of workers in a factory can be considered as the measure of size when studying the industrial

output from the respective factory.

Difference between the methods of SRS and varying probability scheme:

In SRS, the probability of drawing a specified unit at any given draw is the same. In varying probability
scheme, the probability of drawing a specified unit differs from draw to draw.

It appears in pps sampling that such procedure would give biased estimators as the larger units are over-
represented and the smaller units are under-represented in the sample. This will happen in case of
sample mean as an estimator of population mean where all the units are given equal weight. Instead of

giving equal weights to all the units, if the sample observations are suitably weighted at the estimation
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stage by taking the probabilities of selection into account, then it is possible to obtain unbiased

estimators.

In pps sampling, there are two possibilities to draw the sample, i.e., with replacement and without

replacement.

Selection of units with replacement:
The probability of selection of a unit will not change and the probability of selecting a specified unit is

same at any stage. There is no redistribution of the probabilities after a draw.

Selection of units without replacement:
The probability of selection of a unit will change at any stage and the probabilities are redistributed after

each draw.

PPS without replacement (WOR) is more complex than PPS with replacement (WR) . We consider both

the cases separately.

PPS sampling with replacement (WR):

First we discuss the two methods to draw a sample with PPS and WR.

1. Cumulative total method:
The procedure of selection a simple random sample of size n consists of
- associating the natural numbers from 1 to N units in the population and
- then selecting those » units whose serial numbers correspond to a set of » numbers where each

number is less than or equal to N which is drawn from a random number table.

In selection of a sample with varying probabilities, the procedure is to associate with each unit a set of

consecutive natural numbers, the size of the set being proportional to the desired probability.

If X,,X,,.., X, are the positive integers proportional to the probabilities assigned to the N units in the

population, then a possible way to associate the cumulative totals of the units. Then the units are selected

based on the values of cumulative totals. This is illustrated in the following table:
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Units Size Cumulative
1 X, T =X,
7 e IfT  <R<ZT, then
X, I =X +X, i unit is selected
: : Select a random with probability
number R X
i-1 —L,i=12,...,N.
i1 X, T,=Sx, betw§en 1 and T, T,
=i by using random
_ i number table, e Repeat the procedure
! X, =) X, n times to get a
: : /= sample of size n.
N N
N Xy=2.%, Ty=> X,
J=l j=1

In this case, the probability of selection of /" unit is

_‘T;_T;—] _&
i TN TN
=P «X.

Note that 7), is the population total which remains constant.

Drawback : This procedure involves writing down the successive cumulative totals. This is time

consuming and tedious if the number of units in the population is large.

This problem is overcome in the Lahiri’s method.

Lahiri’s method:

Let M= Max X, ie., maximum of the sizes of N units in the population or some convenient
i=1,2,...,N

number greater than M .

The sampling procedure has following steps:

1. Select a pair of random number (7, j) such that 1<i< N, 1< <M.

2. If j<X, then i" unit is selected otherwise rejected and another pair of random number is
chosen.

3. To get a sample of size 7, this procedure is repeated till » units are selected.

Now we see how this method ensures that the probabilities of selection of units are varying and are

proportional to size.
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Probability of selection of i unit at a trial depends on two possible outcomes

— either it is selected at the first draw
— oritis selected in the subsequent draws preceded by ineffective draws. Such probability is given by

PA<i<N)P(A<j<M|i)

LA P, say.
N M
o . : 1 & X
Probability that no unit is selected at a trial = —Z -—t
N3 M
1y oM
N M
=1-—=0, say.

Probability that unit i is selected at a given draw (all other previous draws result in the non selection of
unit 7)

*

=P +QP +Q°P +...

1

-0

X,/NM X, X,
=—=L =—L=—I"o X,.
X/M NX X

i
total

Thus the probability of selection of unit i is proportional to the size X,. So this method generates a pps

sample.

Advantage:
1. It does not require writing down all cumulative totals for each unit.
2. Sizes of all the units need not be known before hand. We need only some number greater than the
maximum size and the sizes of those units which are selected by the choice of the first set of

random numbers 1 to N for drawing sample under this scheme.

Disadvantage: It results in the wastage of time and efforts if units get rejected.

The probability of rejection =1- %

I =

The expected numbers of draws required to draw one unit =

This number is large if M is much larger than X.
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Example: Consider the following data set of 10 number of workers in the factory and its output. We
illustrate the selection of units using the cumulative total method.

Factory no. | Number of workers | Industrial production | Cumulative total of sizes
(X) (in thousands) | (in metric tonns) (Y)

1 2 30 I,=2
2 5 60 I,=2+5=7
3 10 12 I,=2+5+10=17
4 4 6 T,=17+4=21
5 7 8 T, =21+7=28
6 12 13 1, =28+12=30
7 3 4 I, =30+3=33
8 14 17 1, =33+14 =47
9 11 13 T,=47+11=58
10 6 8 T, =58+6=64

Selection of sample using cumulative total method:
1.First draw: - Draw a random number between 1 and 64.

- Suppose it is 23

-T, <23 < T,

-Unit Y i1s selected and Y, =8 enters in the sample.

2. Second draw:
- Draw a random number between 1 and 64
- Suppose it is 38
- T, <38<1Iq
- Unit 8 is selected and Y, =17 enters in the sample

- and so on.

- This procedure is repeated till the sample of required size is obtained.
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Selection of sample using Lahiri’s Method
In this case

M= Max X, =14

i=1,2,..,10
So we need to select a pair of random number (7, j) such that 1<i<10,1<<14.

Following table shows the sample obtained by Lahiri’s scheme:

Random no Random no Observation Selection of unit
1<i<10 1<;<14
3 7 j=7<X,=10 trial accepted ()
6 13 j=13>X,=12 trial rejected
4 7 j=7>X,=4 trial rejected
2 9 j=9>X,=5 trial rejected
9 2 j=2<X,=11 trial accepted (y,)

and so on. Here (y,,),) are selected into the sample.

Varying probability scheme with replacement: Estimation of population mean
Let

Y : value of study variable for the i™ unit of the population, i=1,2,...,N.

X, : known value of auxiliary variable (size) for the i unit of the population.

P, probability of selection of i unit in the population at any given draw and is proportional to size X i

Consider the varying probability scheme and with replacement for a sample of size n. Let y, be the

value of #" observation on study variable in the sample and p, be its initial probability of selection.

Define

then
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is an unbiased estimator of population mean Y , variance of

52 1

2
. L Y =
7 is 2= where o :ZE(—I— j and

n
an unbiased estimate of variance of z is —= = —Z(zr -7)*.
n

-1 r=1
Proof:

Note that z_ can take any one of the N values out of Z,Z

P,P,...,P,, respectively. So

194295 L N>
N
E(z)=Y7ZP

i=1

Il
M=

Y
P

I
—_

I
=

Thus

EE) = %Z E(z)

1 G-
= Z Y
n s
=Y.
So Z is an unbiased estimator of population mean Y .

The variance of Zz is

Var(z) = iz Var (i z, j
n

r=I1

5., Z,, With corresponding initial probabilities

1 & :
= FZVar(zr) (z, s are independent in WR case).
r=I1
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s ) ) ) _ .
To show that —= is an unbiased estimator of variance of Zz , consider
n

(n—l)E(s3>=E[i<zr —zf}

= E{i z’ - nfz}
[iE(zf)—nE(E)ﬂ

:2[1/(1;’(2 VHEE)) |- Varz) +{E@) ]

= (0'22+172)_n(6722+}72) LusmgVar(z) Z[_YJP’_GjJ

1

=(n-1)o’
E(s))=0
2 2
or E(S—Zj =2 Var(z)
n n

Note: If P =i, then z =7y,
N

2
N o’
Var(z) =~ z ==
= BV n
N
which is the same as in the case of SRSWR.
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Estimation of population total:
An estimate of population total is
Y, =li[&] - NZ..
n=\ p,
Taking expectation, we get

A 1&| Y Y. Y,
EY,) :;Z“{—IPI JFFZP2 +...+P—NPN}

r=1 1 2 N

Il
—_

Il
—_

I
S |-
M
M= =
~
||

N

[
s S [ =

<
<

<

i

—_
S
<

Thus fmt is an unbiased estimator of population total. Its variance is

Var(fm) = N*Var(zZ)

An estimate of the variance

2
Var(¥,)= N>z
n

Varying probability scheme without replacement

In varying probability scheme without replacement, when the initial probabilities of selection are
unequal, then the probability of drawing a specified unit of the population at a given draw changes with
the draw. Generally, the sampling WOR provides a more efficient estimator than sampling WR. The
estimators for population mean and variance are more complicated. So this scheme is not commonly

used in practice, especially in large scale sample surveys with small sampling fractions.
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Let U,: i" unit,

P, :Probability of selection of U, at the first draw, i=1,2,...,N

R=1

M=

1

., - Probability of selecting U, at the r" draw

E(l) =F.

Consider
F,,, = Probability of selection of U, at 2" draw.

Such an event can occur in the following possible ways:

U, is selected at 2" draw when

- U, is selected at 1 draw and U, is selected at 2" draw

- U, is selected at 1* draw and U, is selected at 2" draw

- U, is selected at 1" draw and U, is selected at 2" draw

1

- U,,, is selected at 1" draw and U, is selected at 2" draw

- U,, is selected at 1" draw and U, is selected at 2" draw

So F,,, can be expressed as

1
P, #F, forall i unless P, Y

10
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P, will, in general, be different for each i=1,2,...,N. So E [Lj will change with successive draws.
b;
This makes the varying probability scheme WOR more complex. Only ]\);—1 will provide an unbiased
Py

estimator of Y . In general, ]\);—"(i #1) will not provide an unbiased estimator of Y .
p.

l

Ordered estimates

To overcome the difficulty of changing expectation with each draw, associate a new variate with each
draw such that its expectation is equal to the population value of the variate under study. Such
estimators take into account the order of the draw. They are called the ordered estimates. The order of

the value obtained at previous draw will affect the unbiasedness of population mean.

We consider the ordered estimators proposed by Des Raj, first for the case of two draws and then

generalize the result.

Des Raj ordered estimator
Case 1: Case of two draws:

Let y and y, denote the values of units U, and U, drawn at the first and second draws

i i(2)
respectively. Note that any one out of the N units can be the first unit or second unit, so we use the

and U,

notations U, i)

i) instead of U, and U, . Also note that y, and y, are not the values of the first two

units in the population. Further, let p, and p, denote the initial probabilities of selection of Ujiy and

Ui(2), respectively.

Consider the estimators

e
N p,/(1-p,)

:i|:yl + (l_pl)}

N P
S z,+z, ‘
2
Note that % is the probability P(U,,, |U,,)-
1

11
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Estimation of Population Mean:

First we show that Z is an unbiased estimator of Y .
EZ)=Y.

N
Note that ZR =1.

i=1

Consider
1 Y Y Y
E(zl):—E(&j (Note that 2L can take any one of out of the N values —-,—2, ..,—Nj
N 1 b R P Py
1Y Y, Y,
=—|LtP+=2P+.+2XP,
N|E PR Py

~i

E(Zz)z%E{yl +y2—(1_pl)}

D,

_1 (1-F)
= N|:E(J/1)+E1 {Ez (yz »

2

Ui(l) j}:l (Using E(Y)=E,[E,(Y[X)].

where £, is the conditional expectation after fixing the unit U, ,, selected in the first draw.

Y,
Since 22 can take any one of the (NV — 1) values (except the value selected in the first draw) —- with
P> f
probability 1 /. 50
4
(1-£) Y2 Y P
E U, |=U01-P)E,| U, |=01-P)) |-+.——|.
2{)’2 i i1y ( DE, 2, i1 ( 1)21 P] -P

where the summation is taken over all the values of Y except the value y; which is selected at the first

draw. So

2

(1-A) .
E, |:y2p—1Ui(1) :Zij =Y, —».

Substituting itis E(z,), we have
1
E(z,)= N[E()ﬁ) +E (Y, _J’1)]

:%[E(yl)w()’m,—yl)]

= E(r,) =2 =T,
N N

12
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Thus E(z) =

2

Variance:

E(z))+E(z,)

The variance of z for the case of two draws is given as

Var(z)

{

i

N

LB

23

1

|

2
ul Y.
ZP:‘(_I_Ymt] -
i=1 P[

1
4N?

N

2

i=1

2
Y
32 [?_Kot]

Proof: Before starting the proof, we note the following property

which is used in the proof.

The variance of Zz is

Var(z) = EZ*)-[E@)]

2
E L{&_,_yl_i_yz(l_pl)} _y?
2N | p P

1 E{%O+A)+bﬂ—pJT_72
4N? b P
2 2
nature of nature of
variable variable
depends depends
only on upon 1" and
1" draw 2" draw
1 5| Y(1+R) Y, (1 P) P,
L 2;{(3 ), }], 5
I | &Y (+B)’ BF Aﬁﬂ R’ fi
4AN? Z,“l{ P’ 1—}3 1-
L | &y aspy P ﬁﬂ—,f P
4N? Z{ B 1-R P 1-P

13

(1-F") BF,

PP, 1-P

i

+2YY,

J

+2Y.Y.(1+P.)}—I72.
P i~ i
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Using the property

1

N

+2) YA+ R)Q Y, -Y)]-T?

J

1

i

b, —bl}, we can write
2

I3
=
<«
|
YJ
=T
=
=
sl
Ny =T
=T A
2 —
+ =
\|\rJ _
zYi_ g
| NZM
ol
AT s
o AT
s R
= AN
A +
INEREE
AT
R ~
S T
N iy
CON
+ =T

+
e
(@\]
|
ECE -
N NG
L +
> g
LS e
S
N N _
2_ 2_ Yl_ Pl
NS Wz\ /Mzn\
= 0 —
@P NZ# NZ,II_
— 2N — 2N N
< S —|=Z
_ | ~
~ |
Ym Ym Ym
| | |
SN NS
A A by
SAERNNERSAE
~ ~ 7~ N\
(@\] (@]
— —— =1
L L — _ ~
AT AT L
2 L —~=
= _ @\l

reduction of variance

variance of WR

in WR with varying

=2

case for n

probability

14
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Estimation of Var(z2)
Var(z)=E(Z*) - (E(2))’
=EZY)-Y?
Since
E(z,z,) = E[z,E(z, |u))]
=F [2117 :'

= 7E(Zl)
=Y.
Consider
E[Ez —ZIZZ:I =E(Z°)-E(zz,)
=EZ)-Y’
=Var(z)

= Var(z)=z" - z,z, is an unbiased estimator of Var(Z)

Alternative form

Var(z)=z" - z,z,

:(21_22)2
4
2
iy o o »l-p
4| Np, N N p,

1 |:(1_p1)ﬁ_y2(1_p1):|

4N? )2 D
2
_(-p) [&_&j
4N’ b D

Case 2: General Case
Let (U.y),U,q3)s-5Uj(py5-Uy,y) be the units selected in the order in which they are drawn in n draws

where U, denotes that the i" unit is drawn at the " draw. Let (V1> Vasees Vs y,) and

(P> Pyseess Pse-s p,) bE the values of study variable and corresponding initial probabilities of selection,
respectively. Further, let B, Bq,ses Bysees By be the initial probabilities of

U,,,U.

iy Uiaysen U,

s U

i Tespectively.

15
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Further, let

1
z, =—{yl F Yyt (-, —~-~—pr1)} for r=2,3,....n
N p

I

Consider z =— z z, asan estimator of population mean Y.
n r=1

We already have shown in case 1 that E(z,)=7Y.

Now we consider  E(z,),r =2,3,...,n. We can write

U

r

E(z)=— EE[ Uiy Uiy |

where E> is the conditional expectation after fixing the units U,,),U,,,,...,U,, , drawn in the first (r -

r

1) draws.
Consider
E|2rq _EE.|2rq U .U U
P L B Ul e Y e G R AR ) T T S )

r

v,
=5 =Fay~Fiy-~Fi- 1))E[ ‘ i(1) i(2)""’Ui(V1)J'

Y
y .
Since conditionally —can take any one of the (N -r-1) values P_J’ j=L2,...,N with probabilities
p, ;
J

P.
J

=fay~fiey -1

Y
E[p—:(l—p1 _‘”_pr—l)]

N
where * denotes that the summation is taken over all the values of y except the y values selected in the first (» -1) draws

J=1

, SO

Y, P.
. J
P. (1-P.

J

*

(1-P,

N
- ) Z
i(l) 1(2) z(r 1) ~ 1(1)_%(2)”'_%(1’—1))]

N*Y
2

J

N
like as > , 1.e., except the values VYV 1 which are selected in the first (7 -1) draws.

J =1 i(1),i(2), .., i(r =1))

16
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Thus now we can express

1
E(z.) =+ Bk, y1+y2+---+y,_1+%(l—pl—---—pr_l)}

1| y,
= B | Yo+ Yo et Yy + YJ':|
i =
1 i N
= i oottt + )3 Y
i F=1(#i(1),12)i (1))
_ Lely, 4y v, +ly, (v, +Y Y,
Yl iy Ty Teeet i(r—1)+{ tot_( iy Ty Teeet i(r—l))}
= LE[Y,]
N
_ Y,
N
=Y forall r=12,....n
Then
- I
E(Z)‘;Z;E(Zr)
Iy
nr:l
=Y.

Thus Z is an unbiased estimator of population mean Y .

The expression for variance of z in general case is complex but its estimate is simple.

Estimate of variance:
Var(z)=E(Z*)-Y".
Consider for r<s,
E(z,z)=E|z,E(z,|U,,U,,...U_)]
=F [Z,Y J
=YE(z,)
=Y?
because for r<s, z, will not contribute

and similarly for s<r,z_ will not contribute in the expectation.

17
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Further, for s<r,

E(z,z,)=E|z,E(z,|U,,U,,...U,)]

= E[ZSY:I

=YE(z,)

=Y.

Consider
f s 3 S ols 5 Shen
n(n—1) r(£5)=1 s=1 n(n—1) r(£5)=1 s=1
= -DY’
n(n—1) n(n=1)

_7
Substituting Y7 in Var(z), we get

Var(z) = E(z*)-Y*

=E<E2)—E{ LS Bz

( 1) r(#s)=1 s=I
o~ 1 n n
=Var(z)=2z" - zz,.
n(n—1) )'(¢Zs):l ;

2
Using (Zz,,j =sz + Z erzs
r=1 r=1

r(#s)=1 s=1

= i izz =n'z —er,

r(#s)=1 s=I

The expression of @(E) can be further simplified as

n(n 1){ Zz}

b }
n(n 1)

Nt

Var(z)=z> -

18
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Unordered estimator:

In ordered estimator, the order in which the units are drawn is considered. Corresponding to any ordered
estimator, there exist an unordered estimator which does not depend on the order in which the units are

drawn and has smaller variance than the ordered estimator.

In case of sampling WOR from a population of size N, there are ( J unordered sample(s) of size n.

n
Corresponding to any unordered sample(s) of size » units, there are n! ordered samples.
For example, for n =2 if the units are u, and u,, then

- there are 2! ordered samples - (u,,u,) and (u,,u,)

- thereis one unordered sample (u,,u,).

Moreover,

Probability of unordered Probability of ordered Probability of ordered
(sample (u,,u,) j - [sample (u,,u,) ] (sample (u,,u,) j
For n =3, there are three units u,,u,,u, and
-there are following 3! = 6 ordered samples:

(v 1y, uy), (U g, 1y ), (U, 1y 1), (U, Uy, 1), (g, Uy 5 U ), (U, Uy, Uy
- there is one unordered sample (u,,u,,u,).

Moreover,

Probability of unordered sample
= Sum of probability of ordered sample, i.e.
P(uy,uy,uy)+ P(uy,uy,uy) + P(uy,uy,uy) + P(uy,usuy) + P(ug,u,uy) + Pluy,u,,uy),

Let z,,s=1, 2,..,[ ], i=1,2,..,n!(=M) be an estimator of population parameter & based on ordered
n

sample s,. Consider a scheme of selection in which the probability of selecting the ordered sample

(s;) 1s p.. The probability of getting the unordered sample(s) is the sum of the probabilities, i.e.,

M
P, = Z Py
i=1

For a population of size N with units denoted as 1, 2,..., N, the samples of size n are n— tuples. In the

n™ draw, the sample space will consist of N(N —1)...(N —n+1) unordered sample points.

19
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1
N(N-1)..(N—-n+1)
n! selection of any
=n!P
N(N-1)..(N—-n+1)

Py, = P[selection of any ordered sample]=

P, = P[selection of any unordered sample]= tored |
ordered sample

M (=n!) | _ |
then D, = ‘ Do = n(];/'v' I’l) = []1]}

Theorem: éo =z, 8= 1,2,...,[

A M )
and gu = Z Zsipsi
i=1
are the ordered and unordered estimators of &, then
(i) E@6,)=E(@,)
(i) Var(6,) <Var(6,)
where z_ is a function of 5" ordered sample (hence a random variable) and p,, s the probability of

selection of s ordered sample and p, =P

s

N
Proof: Total number of ordered sample = n ![ j
n

o) u
(@) E(éo) = Z Z Z5iPsi

s=1 i=l

s
E@,)= 4 (Zzsipsi jps

s

_ P
Z{Zz p, jp
= Zzzsipsi

= E(éo)

(i) Since 6, =z

si?

A N
SO 002 =zs2i with probability p_,i=12,..,M, s =1,2,...,( J
n

M M 2
Similarly, 6, =Y z,p,., so 6 =(Zzﬂ. p;,.j with probability p,
i=l1

i=1

20
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Consider
Var(8)=E@)-[ E@) |
=YX e EG)]

var(9,) = EG)-[ E@,) |
-5(Sen] n-[E@)]
Var(6,)-Var(0,) = zzz; P - (Zz P, jz P
"L Z(Zent ]
—22(225,» p;fj(zi:zsf p;-]ps
= 2[222 Py +(Zzsf p;j (Z ps,)—2[2i‘, z, p;,«j(zi‘, Z, psfjps}
ET{in (T oo Zenon|
- Z Z {(zs,- - Z 2,p,)’ ps,} 20

= Var(0,)~Var(@,) = 0
or Var(éu) < Var(éo)

Estimate of Var(0,)

Since
Va’”(éo) - Va}’(éu) = ZZ{(Z“' - Z Zsip;i)z psi:|
Var(6,) =Var(6,) —ZZ{TW}

= Zp;i @(éo)—zps,(m

Based on this result, now we use the ordered estimators to construct an unordered estimator. It follows

from this theorem that the unordered estimator will be more efficient than the corresponding ordered

estimators.

21
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Murthy’s unordered estimator corresponding to Des Raj’s ordered estimator for the
sample size 2
Suppose y, and y; are the values of units U, and U, selected in the first and second draws respectively
with varying probability and WOR in a sample of size 2 and let p, and p; be the corresponding initial
probabilities of selection. So now we have two ordered estimates corresponding to the ordered samples
s, and s, as follows
s, = (¥, y;) with (U,,U))
55 =(y;,¥,) with (U,,U;)
which are given as
2(s)) =§{(l+pglﬁ+a—pi);—j
where the corresponding Des Raj estimator is given by
L[ ; +&+M}
2N p; P,
and
Z(s3) =§{<l+pj>ﬁ+<l—pj ﬁ}
P, P
where the corresponding Des Raj estimator is given by

1 y, »(l-p))
— |yt
2N p; pi

The probabilities corresponding to z(s,) and z(s,) are

* pip;

p(S1)= .

1-p,

* pP;p;
p(sz): .

l—pj.

p(s) = p(s)+ p(s;)
_ pipj(z_pi _p_/)
(1-p)(1-p,)

22
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pis) =5
1 1- i
Pl =-—F—
2-p,—-p,
Murthy’s unordered estimate z(u) corresponding to the Des Raj’s ordered estimate is given as
Z(u)=Z(s;)p'(s) +Z(s3)p(s,)

_Z(s)p(s) +Z(5;,)p(s,)

p(s)+ p(s3)
y' plp j y p]pl
(+p) 2 +(1-p) ’}(’H { {(Hp) “++(1-p, }{ ﬂ
{ZN { p, pyJ\1=p,)| | 2N " p pJ\1-p,
plpj 4 pjpl
l=p; 1-p
1 _
o+ p) L= p) - p)+{(1+p) +(1=p)2t }(l P
_2N| ; P p; p;
A-p)+1-p,)
T
— 1= p) 2 {4+ p)+ (= p)}+ (= p) (1= p)+(+ p,}
2N D, i
2_pi_pj
yA
(1- p,) ~+(1-p)—+
— p[ p]
NQ2-p,—p))
Unbiasedness:
Note that y, and p, can take any one of the values out of YV.Y,,..Y, and B,P,.. P,
respectively. Then y; and p; can take any one of the remaining values out of Y,Y,,..,Y, and

P,P,...,P,, respectively, i.e., all the values except the values taken at the first draw. Now

23
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Y Y. EP. PiP

1- P)Fl+(1 P)—P’ | ;)+1 IJJ

_ 1 i J — 4 -
E[Z(u)]:NE

i<j

1-P, —py L B B
| ( )*l+( )*j 1_B+1_13j
TR P

1 { Y YH PP H
=— (l—P.)—l+(l—Pl.)—‘/ —
NG| "R P (=F){-F)

i j=1 i=1
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Variance: The variance of Z(u)can be found as

_ 1 & (-B-P)I-R)-B)(¥, Y| RPQ-R-P)
I/czr[Z(Lt)]—2i;l N'2-P-P) (B Pj] 1-P)1-P)
1 Rzz(l—fz—fz)[g_gjz

254N @-B-P)\ B P

Using the theorem that Var(é’u) < Var(éo) we get

Var[?(u)] <Var [7(31*)}
and Var[2(u)] < Var[ 2(s}) |

Unbiased estimator of V' [z(u)]

An unbiased estimator of Var(? | u) is

Var[z(u)] =

(-p-p)0-p)1-p)(y, )
N*Q-p-p,) pop)

Horvitz Thompson (HT) estimate
The unordered estimates have limited applicability as they lack simplicity and the expressions for the
estimators and their variance becomes unmanageable when sample size is even moderately large. The

HT estimate is simpler than other estimators. Let N be the population size and y,, (i=1,2,...,N) be the

value of characteristic under study and a sample of size n is drawn by WOR using arbitrary probability

of selection at each draw.

Thus prior to each succeeding draw, there is defined a new probability distribution for the units available
at that draw. The probability distribution at each draw may or may not depend upon the initial

probability at the first draw.

Define a random variable o;,(i=1,2,..,N) as

{1 if Y, is included in a sample 's' of size n
a. =

0 otherwise.
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Let z, = i , i=1...N assuming E(¢;) > 0 for all i
NE(a,)

where
E(a,)=1.P(Y,es5)+0.P(Y, ¢5)
= ]Z'i

is the probability of including the unit i in the sample and is called as inclusion probability.

The HT estimator of Y basedon y,,¥,,..., ¥, is

_ A~ 1 n
z, =Yy = _zzi
i=1
1 N
13z
noio
Unbiasedness

2 1 &
EY,)= ;ZE(zla[)
i=1

MZ )
N
&=
Q

i

|
S|~ S |—= S |-
M- M-
A:‘s
N,

M=
=[S F
Il
~|

E(a,)

Il
—_

I
—_

which shows that HT estimator is an unbiased estimator of population mean.

Variance

V(YLHT) = V(En)
=EE)-[EGE)]

= E(E’f) _ )72.
Consider
1 N g
EGD) =—2E{ a}
n i=1
1 N ) 5 N N
:_ZE Qa; z + Z Zal.ajzl.zj
n i=1 i(#j)=1 j=1
1 | & N N
=—| D ZE@)+ Y, Y zzE(aa)) |-
oL i()=1 j=1
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If §= {S} is the set of all possible samples and 7, is probability of selection of i" unit in the sample s

then
E(a,)=1P(y,€s)+0.P(y, ¢5)
=1z, +0.(1-7) =,
E(@})=1.P(y, es)+0".P(y, &5)
=7,
So
E(a)=E(a)

Zz T+ zz;;jzlzj

i#j) i=1

where 7, is the probability of inclusion of i" and j’h unit in the sample. This is called as second order

inclusion probability.

Now

=[EG)]

:nl_z >z [E(a,.)f} > Y zz,E(a)E(a,)

i(#))=1 j=1

1 [N N
A I
= Ziﬂ.i 7T17Z']ZIZJ
=

i(#))=1 j=1

Thus
A 1| & , N N
Var(YHT)__Z Zﬂizi + Z Zﬂljzlz/
nola i(2))=1 j=1
1 N - N N
-— Zﬁl z; + Z ZHIEJZIZJ
no i(£))=1 j=1

=L2 ZNlﬂ[ (1-7)z} + Z Z(ﬂ'.—ﬂ'iﬂ'i)zizj}
n

i=1 i(#j)=1 j=1

11 n2y2 N N yy
=— T (l-7)—1+ T, — T, Y
2 Z l( 1)N2 2 Z Z( )Nﬂ”

o= i )=l A i
1| (-7 ) , & & 7—mr,
= 2 2 )
i=1 i i(2))=1 j=1 7T
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Estimate of variance

T 1| ,2 1-7, o ~o| By T |V
Kﬂwmw}42u7l+22(’ q ﬂ
N7 |5 T V4

i(#j)=1 j=1 ij

This is an unbiased estimator of variance .

Drawback: It does not reduces to zero when all 2= are same, i.e., when Y, o« TT,.
TT.

1

Consequently, this may assume negative values for some samples.

A more elegant expression for the variance of )L/HT has been obtained by Yates and Grundy.

Yates and Grundy form of variance

Since there are exactly » values of ¢, whichare 1 and (N —n) values which are zero, so
N
Sa =n.
i=l1
Taking expectation on both sides
N
Z E(a)=n.
i=l1

Also

E(iaij =iE(af)+ i ﬁ:E(alaj)
; -1 i(#))=1 j=1

N N

E(n)z :ZN:E(a[)+ z ZE(alaJ) (using E(Oli)=E(0‘,~2))

i=1 i(#j)=1 j=1

n’=n+ ZN: ZN:E(alaJ)

> Y E@a,)=n(n-)

i=)=1 j=1

Thus E(e,a;) = P(e, =1, =1)
=P(a, =)P(a, =1|e, =1)
= E(a)E(a,;|o, =1)
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Therefore

i[Ema><aawm>]

J(#i)=1

- [E(@)E(a,|a, =)~ E(a)E(,)]

J#)=1

=E(a,) ZN: [E(ij |, :1)_E(0‘j)]

Jz)=1
= E(a)[(n=D)~(n—E(a)]
= _E(ai)[l _E(ai)]
=-m,(-7,) M)
Similarly

N

Y [E@a)-E@)E@)]|=-n,(0-7). (2)

i(#))=1

We had earlier derived the variance of HT estimator as

~ 1 N N N
Var(Y,,) = n—zhl r(l-z)zt+ D D (x, —ﬁiﬁj)zizj:|

i(=))=1j=1

Using (1) and (2) in this expression, we get

Var(y, T)_ {Zﬂ(l )z} +Z7Z (-7,)z; —22 Z(ﬂﬂ.—ﬂij)zizj}
{ ﬁ:{ y E(aiaj)—E(ai)E(aj)}zf

i=1 | j(=i)=1

i{ ﬁj E(aiaj)—E(ai)E(aj)}zf.—Z i i{E(ai)E(aj)—E(aiaj)}zizjzl

J=1 Li(=/)=1 i(=))=1 j=1

2n’ i(

#j)=1 j=1 i(=)=1j=1 i(=)=1j=1

Z Z(ﬂﬂj—ﬁ”)(zi2+zf—22izj) .
n i(#j)=1 j=1

The expression for 7, and 7, can be written for any given sample size.

For example, for n =2, assume that at the second draw, the probability of selecting a unit from the units

available is proportional to the probability of selecting it at the first draw. Since
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E(a,) = Probability of selecting Y, in a sample of two

=P, +B,
where P, is the probability of selecting ¥, at " draw (r=1,2). If P is the probability of selecting the
.., N) then we had earlier derived that

i unit at first draw (i =1,2,

{ y, is not selected}Plz y, is selected at 2" draw|

at 1" draw ¥, is not selected at 1" draw

- >

J(#i)=1 1
N
Z P.
S1-P, 1-P P,
So
[ N }
E(a)=F
Jj= j })z
Again
E(a,a;) = Probability of including both y, and y; in a sample of size two
_Pll P12|z +P PtZ\j
=P——+P £
- "1-P
=PP, L+ !
11-B 1-P,

Estimate of Variance

The estimate of variance is given by

Var(Fy) =55 3 5Tz )

i(#j) j=1 1/
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Midzuno system of sampling:
Under this system of selection of probabilities, the unit in the first draw is selected with unequal

probabilities of selection (i.e., pps) and remaining all the units are selected with SRSWOR at all

subsequent draws.

Under this system
E(a;)=n, =P (unit i (U,) is included in thesample)
= P (U, is included in 1" draw) + P(U, is included in any other draw)
» (Probability that U, is not selected at the first draw and j
= P+

is selected at any of subsequent (n-1) draws

n—1
=P+(1-P
i+ ’)N—l
:N—nB+ n—l.
N -1 N -1

Similarly,

E(a,a j) = Probability that both the units U, and U, are in the sample

Probability that U, is selected at the first draw and J

U, is selected at any of the subsequent draws (n—1) draws
Probability that U, is selected at the first draw and J
+

U, is selected at any of the subsequent (n—1) draws

Probability thatneither U, nor U, is selected at the first draw but j

both of them are selected during the subsequent (n—1) draws

_przl pntl +(1_p_p)w

"N-1 'N-1 "OU(N=D)(N=-2)
:(n—l) N—n(})i+P‘)+n—2}
(N-1)| N-2 /
= n-1 N_n(E+P.)+n_2 .
7 N-1|N-2 7TON=2

Similarly,
E(a,a;a,) =7, = Probability of including U,,U; and U, in the sample

_ (n-D(rn=2) |:N_n(E+P'+Pk)+ n—3}
(N-D(N-2)| N3 N-3

31

Page 100 of 101



By an extension of this argument, if U,U,,..,U, are the 7 units in the sample of size n(r <n), the
probability of including these r units in the sample is

E(aa,..a)=rx, (n=1)(n—=2)...(n—r+1)
J ijor (N 1)(N 2) (N r+1)

{N— (B+P +.. +P)+N r}

=-r

Similarly, if U,,U,,...,U, be the n units, the probability of including these units in the sample is

E(ea,..a)=r, = (n-1)(n-2)...1
VAt ijq (N-1)(N-2)..(N—n+1)

I

which is obtained by substituting » =n

(P+P+..+F)

(F+P +..+F)

Thus if P's are proportional to some measure of size of units in the population then the probability of

selecting a specified sample is proportional to the total measure of the size of units included in the
sample.

Substituting these 7, 7,7, etc. in the HT estimator, we can obtain the estimator of population’s mean

and variance. In particular, an unbiased estimate of variance of HT estimator given by

@(ZT)— ZZ” -z

i=j=1 j=1 ,

where

T, —7T, = N_n

n—1
{(N—n)Pl.Pj +N_2(1—P.—P.)}.

The main advantage of this method of sampling is that it is possible to compute a set of revised
probabilities of selection such that the inclusion probabilities resulting from the revised probabilities are
proportional to the initial probabilities of selection. It is desirable to do so since the initial probabilities

can be chosen proportional to some measure of size.
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